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The Iterated Closest Contour Point (ICCP) algorithm is widely used in geomagnetic navigation.
In order to enhance the anti-interference performance of the ICCP, an improved algorithm is pro-
posed. First, the principle of delta modulation is introduced to generate a geomagnetic matching
sequence according to the magnetic fluctuations, this assists finding the optimal quantitative step
and matching length; thus, the algorithm’s accuracy and real-time performance are improved.
Second, in order to solve the problem of geomagnetic matching under an interference environ-
ment, a Probability Data Association (PDA) algorithm based on regenerated measurements is
adopted. The ideal magnetic value is regarded as a target, and the measured values within the
confidence region are taken as the effective measurements of the target. Each of them will give
an estimation of the vehicle’s position. Considering the constraints of a vehicle’s kinematic per-
formance, its final position can be obtained by fusing all effective estimations with the PDA
algorithm. Simulation and semi-physical experiments have verified the feasibility and effective-
ness of the proposed algorithm. The Regenerated Measurements (RM)-PDA algorithm shows
better performance and can be used in practical applications.
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1. INTRODUCTION. Geomagnetic navigation is passive, non-radiative, and has good
stealth performance (Teixeira and Pascoal, 2008; Zhou et al., 2010; Gleason, 2015). It can
also provide navigation information in all weather and all terrain conditions. In addition,
the location errors of geomagnetic navigation do not accumulate over time. Therefore, it
is of great value in military and civilian fields. The main idea for locating the vehicle is
to match the magnetic sequence accumulated over a period of time with the geomagnetic
map previously stored in the navigation computer. Generally, a geomagnetic navigation
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system contains a high-precision geomagnetic map, matching algorithm and geomagnetic
real-time measurement (Nyatega and Li, 2015). Among them, the matching algorithm is
the core.

The Magnetic Correlation Matching (MAGCOM) algorithm and the Iterated Clos-
est Contour Point (ICCP) algorithm are two typical Geomagnetic Matching Algorithms
(GMAs). The idea of MAGCOM is consistent with Terrain Correlation Matching (TER-
COM) algorithms. Its principle is simple and its requirement for the original position error
is not too high, but the allied Inertial Navigation System (INS) is assumed to have no head-
ing error. In addition, the velocity error and heading error of INS cannot be corrected. The
ICCP algorithm does not have the above disadvantages, but it is based on the following pre-
conditions: the magnetometer has no measurement error and the real position of the vehicle
is on (or very close to) the magnetic contour corresponding to the measurements. Taking
into account the measurement error of the magnetometer, the ICCP algorithm converges to
the closest point sequence on the magnetic contour, rather than its real position.

In response to the above problems, the matching algorithm has been improved to
increase its precision and real-time performance. In similar studies, a neural network has
been applied in gravity-aided navigation and the correct matching probability has been
enhanced (Xiong et al, 2013). In addition, the efficiency of the algorithm has been improved
by introducing an intelligent optimisation algorithm (Rajalkshmi and Dinakaran, 2017).
However, there has been relatively little reported research related to the magnetic matching
problem under interference conditions.

The geomagnetic field is weak and susceptible to being disturbed, so measuring noise
will inevitably affect the matching result. It has been shown that the variation range of the
total intensity of Earth’s main magnetic field at a height of 1,000 km above the ground is
only 0·02 ∼ 0·03 nT/m (Liang, 2010). In general, geomagnetic measurements have three
kinds of errors (Shi et al., 2010; Heller and Jordan, 2015): the instrument error produced
by the magnetometer’s structure and material, the error of the external interference field
and the error of the geomagnetic model caused by time variation. Among them, the instru-
ment error mainly includes the non-orthogonal, scale and zero-bias errors; the external
interference field is mainly caused by the soft and hard magnetic material of the vehicle
and the random magnetic field which is difficult to describe using the magnetic model. In
order to reduce the error of the geomagnetic model, the United States (US) National Geo-
physical Data Center (NOAA/NGDC) and the British Geological Survey (BGS) update
the World Magnetic Model (WMM) every five years (Chulliat et al., 2015). Many coun-
tries are also committing to build more sophisticated geomagnetic field models in local
regions.

Since the influences of the instrument and interference field are often highly cou-
pled in practice, researchers have attempted to enhance the navigation accuracy in two
ways: Geomagnetic Measurement Error Compensation (GMEC) and GMA with good anti-
interference performance. The GMEC problem is equivalent to a magnetometer calibration
problem that estimates the magnetic measurements by evaluating the parameters of the
vehicle’s magnetic field in real-time. Essentially, it is a nonlinear optimisation problem. At
present, optimised algorithms, such as the magnetic deviation algorithm (Basterretxeairibar
et al., 2016), least squares algorithm (Alonso and Shuster, 2002; Ammann et al., 2015)
and particle swarm algorithm (Ali et al., 2012) have been applied and some progress has
been made. However, there are still some shortcomings (Cai et al., 2016; Ge et al., 2017):
(1) The random magnetic interference field is usually difficult to model. In this case, the
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GMEC method is not available. (2) There may be some unknown interferences in actual
measurements, resulting in mismatching. (3) Current GMEC algorithms are still limited.
For example, some algorithms are too simple to describe and process the measurement
noise, and the effect of the GMEC is restricted to some extent (Crassidis et al., 2012). On
the other hand, even if the interference field is compensated, the compensated residuals and
the instrument error of the magnetometer will still affect the navigation results. Therefore,
it is very important to study GMAs with good anti-interference performance.

Currently, more and more attention has been paid to enhance the robustness of GMA.
The achievements can be summarised into three parts: (1) Process the measured magnetic
data to reduce the effects of the interference field. For instance, Qiao et al. (2011) used a
wavelet transform and the Empirical Mode Decomposition (EMD) algorithm to process
the measured data to improve the accuracy of the GMA. In order to deal with the gross
error, a robust estimation algorithm based on the Random Sample Consensus (RANSAC)
theory was proposed (Luo et al., 2008), this suppressed the Gaussian white noise to some
extent. (2) Improve the GMA. For example, Wu et al. (2013) proposed a GMA based on
the tree search algorithm, which does not need to know the distribution of the measurement
error and has a certain anti-interference performance. However, the computational time
multiplies as the length of the matching sequence increases. Xiao et al. (2017) introduced
the delta modulation principle to the ICCP algorithm to find an optimal matching length
without decreasing the accuracy. The anti-interference performance of the algorithm was
improved. (3) Select the appropriate navigation factor under an interference environment.
Guo and Cai (2013) analysed the stability and availability of the seven elements of the
geomagnetic field and indicated that the total intensity F can be used as a navigation factor
for a flight vehicle. Karim et al. (2011) pointed out that the magnetic gradient vector is less
susceptible to being affected by time-varying interference and can be used for geomagnetic
navigation. However, these conclusions still need to be further studied in real applications.

Compared with the GMEC algorithm, the study of the GMA within an interference
field is relatively limited, and relevant theories still need to be enriched. In this paper, the
idea of Probability Data Association (PDA) in target tracking is introduced to the Delta
Modulation (�M)-ICCP algorithm to locate a vehicle in an environment with interfer-
ence. This paper is organised as follows. The basic principle of the �M-ICCP algorithm is
reviewed in Section 2. The GMA based on PDA is detailed in Section 3. Meanwhile, the
constraints of a vehicle’s kinematic performance are analysed. In Sections 4 and 5, the pro-
posed algorithm is evaluated by simulation and semi-physical experiments. Finally, some
important conclusions are summarised in Section 6.

2. BASIC PRINCIPLE OF �M-ICCP ALGORITHM.
2.1. The constraints of generating a Geomagnetic Matching Sequence (GMS). First,

in order to ensure that the magnetic values of the GMS completely retain the magnetic
information on the path, the sampling frequency should satisfy the sampling theorem:

fs ≥ 2 fmax (1)

where fs is the sampling frequency and fmax is a threshold. By analysing the magnetic signal
along a path using a Fast Fourier Transform (FFT), fmax can be determined according to its
energy spectrum.

https://doi.org/10.1017/S0373463319000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000535


NO. 1 AN IMPROVED ICCP MATCHING ALGORITHM UNDER INTERFERENCE 59

Figure 1. Schematic diagram of �M-ICCP algorithm.

Second, as the magnetic map is stored in the form of a grid, the distance between two
adjacent matching points should not be less than one magnetic grid:

ng =
v × Ts

d
≥ 1 (2)

where Ts = 1/fs, d is the grid spacing of the magnetic map, v is the vehicle’s speed and ng
represents the magnetic grid that the vehicle passes through during a sampling period.

2.2. The ΔM-ICCP algorithm. The �M-ICCP algorithm is based on the delta mod-
ulation. In a vehicle’s path planning stage, several calibration points can be set to correct
the INS based on the error characteristics of the INS, the movement time of the vehicle, the
accuracy of the GMA and so on. When the constraints of the sampling theorem (Equation
(1)) and the magnetic map (Equation (2)) are satisfied, the magnetometer’s measurements
on the path can be encoded according to the delta modulation principle (Schindler, 2009)
and the encoded sequence is denoted as FC(k)(k = 1, 2, . . . , n). When two codes “1” or “0”
continuously appear in FC(k), Equation (3) is met, and this means that the magnetic changes
at two adjacent sampling points exceed the pre-set quantisation step of delta modulation.
In this way, only the point whose magnetic variation with the former matching point is no
less than the specified threshold will be added to the GMS, and the impact of the magnetic
residuals after compensation will be reduced.

FC(k) ⊕ FC(k − 1) = 0, k = 2, 3, . . . , n − 1 (3)

where “⊕” is the XOR operator.
Figure 1 shows the process to determine the sampling time of �M-ICCP algorithm.

As shown, t1 is the time interval of the magnetometer’s outputs. t2 satisfies Equations
(1) and (2). Based on the delta modulation principle, the magnetic signal is encoded as
“001101110”. Then according to Equation (3), the matching points are generated with the
magnetic information before the calibration point. Finally, once the matching length (L) is
fixed, the GMS will be confirmed.

It is obvious that the pre-set quantisation step of delta modulation (δ) and matching
length (L) are two significant parameters in the �M-ICCP algorithm. It can be regarded
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as an optimisation problem to find the appropriate parameters for the algorithm. The
optimisation process is discussed in detail in our previous work (Xiao et al., 2017).

When the quantisation step of the delta modulation is 0, the �M-ICCP algorithm does
not limit the magnetic change of the GMS. In this case, the �M-ICCP and ICCP algorithms
are the same.

The characteristics of the �M-ICCP algorithm are as follows:

(1) The parameters of the algorithm are optimised according to the magnetic information
of the planning path. In consequence, the algorithm has a certain adaptability to the
environment.

(2) The �M-ICCP algorithm guarantees the magnetic information of the GMS and uses
an optimal L to match, so the real-time performance is improved without reducing its
precision.

(3) In the path planning process, the matching parameters of each calibration point can
be calculated and stored offline, which makes it very convenient to be called in a
task.

3. THE FUSION ALGORITHM BASED ON PDA.
3.1. The basic idea of PDA. PDA is based on the Bayes formula, and is appropriate

for tracking single or sparse targets. It assumes that there is only one target in the clutter
environment. If the trajectory of the target is formed and multiple echoes are detected,
then all the effective echoes may come from the target, and each of them has a different
confidence probability (Gulati et al., 2017).

Suppose Z(k) is a set that collects all effective measurements within the tracking gate of
the target at moment k, which is denoted as:

Z(k) = {zi(k)}n(k)
i=1 (4)

where n(k) is the number of effective measurements at moment k and zi(k) is the
i-th measurement. Zk = {Z(1), Z(2), . . . , Z(k)} records all the effective measurements from
moment 1 to k.

The probability that the i-th measurement at moment k comes from the target under
condition Zk can be described as:

βi(k) = P(θi(k)|Zk), (i = 1, 2, . . . , nk) (5)

where θi(k) is the event that zi(k) is from the target, θ0(k) means there is no measurement
at the moment.

Here, {θ0(k), θ1(k), . . . , θn(k)} is a complete orthogonal set that segments the event space,
so the following equation is met:

n(k)∑
i=1

βi(k) = 1 (6)

It can be proved that the optimal estimation of the target at moment k in the mean square
sense is:

x̂(k|k) =
n(k)∑
i=0

βi(k)x̂i(k|k) (7)
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Figure 2. Basic idea of the �M-ICCP algorithm based on PDA.

where x̂i(k|k) is the state estimation of the target under the condition that the i-th effective
measurement is from it. βi(k) illustrates the influence of each effective measurement on the
final estimation.

3.2. The improvement of the ΔM-ICCP algorithm.
3.2.1. Improvement of the ΔM-ICCP algorithm based on PDA. Considering the

effects of GMEC residuals, magnetic changes and instrument errors, the actual magnetic
measurements are not exactly the same as those on the magnetic map. If the interference
field is very large, a mismatch will occur. Inspired by the idea of PDA, the ideal magnetic
value of interference-free measurement can be regarded as a target, and multiple measure-
ments in the interference environment are all likely to be the effective measurements of the
corresponding position. Similarly, their confidence probabilities are different. In Figure 2,
the basic idea of the algorithm is illustrated.

For example, the matching length in the figure is set to 5. mk0 is the ideal magnetic value
at the k-th matching point. mk1, mk2, . . . , mkn are the data measured n times in the presence
of an interference field. mk−1, mk−2, mk−3, mk−4 are magnetic values of the other four
matching points. Every two adjacent matching points of the magnetic field change satisfy
Equation (3). Assuming that the interference field follows the Gaussian distribution with
mean 0, variance σ 2, then according to the 3σ criteria, the magnetic measurements will
fall within a circle of radius 3σ centred at mk0 with a probability of 99·74%. If the n mea-
surements at the point are all effective, and each of them constitutes a matching sequence
with mk−1, mk−2, mk−3, mk−4, then there will be n matching results when the �M-ICCP
algorithm is executed. Considering the constraints of the kinematic performance, such as
heading and velocity constraints, the position of the vehicle should be within a reasonable
range. The matching result within the range is represented as a valid estimate of the vehicle
position, otherwise, the matching result is invalid. By fusing all valid estimations with the
PDA algorithm, the final position of the vehicle can be estimated. Then, the geomagnetic
map is read to obtain the value at the calibration point, which can be used to generate the
GMS in the subsequent process. Thus, the INS can be continuously corrected.

The essence of the above method is to select the positions where the vehicle is most
likely to appear and to fuse them by using the PDA algorithm. Statistically speaking, if
the magnetic field is measured enough, there will always be a measurement close to the
ideal magnetic value, thus ensuring the fusion result of the PDA algorithm. However, the
more the �M-ICCP algorithm is operated, the worse real-time performance it displays.
Therefore, a certain number of measurements are used for fusing in practical applications,
but this may lead to instability: if the measurement value deviates far from the ideal value
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Figure 3. Schematic diagram of generating GMS based on RMs.

and its matching result is considered to be effective, the fusion accuracy will be greatly
reduced. Conversely, if the measurement value approximates to the ideal value, a good
fusion result will be obtained. In order to avoid this problem, an improved method based
on Regeneration Measurements (RMs) is proposed.

3.2.2. Improvement of the ΔM-ICCP algorithm based on RM-PDA. The basic prin-
ciple of generating GMS using RMs is shown in Figure 3. The definitions of mk−1, mk−2,
mk−3 and mk−4 are the same as those in Figure 2, m̂k0 is the estimation of the ideal mag-
netic value at the k-th matching point, and σ̂ is the estimated standard deviation of the
magnetic measurements. Three circles, centred on m̂k0 with a radius of σ̂ , 2σ̂ and 3σ̂ ,
divide the confidence region of the magnetic measurement into three areas. The RM-PDA
method respectively regenerates several possible measurements in each area and reconsti-
tutes GMSs for geomagnetic matching and fusion. For example, in Figure 3, seven RMs
are respectively generated at m̂k0, m̂k0 ± σ̂ , m̂k0 ± 2σ̂ and m̂k0 ± 3σ̂ , which are denoted by
m′

ki (i = 1, 2, . . . , 7). Combining with the other four magnetic values of the matching points,
several new GMSs can be formed. Then, the final position of the vehicle can be estimated
by implementing the �M-ICCP and PDA algorithms.

The improved algorithm does not directly use the measured magnetic values for match-
ing but generates a number of controllable RMs based on the statistical characteristics of
the magnetometer measurement, thereby limiting the execution time of the algorithm and
greatly improving the algorithm’s real-time performance. On the other hand, the RMs in r1,
r2 and r3 can be adjusted to avoid inaccuracy and instability when random measurements
are used for matching.

3.3. Statistical characteristics evaluation of the magnetic measurements. It is diffi-
cult to measure the magnetic field of a position many times during the movement, but the
vehicle will not move too far in a short time, and the magnetic variation is very slight.
Compared with the influence of the interference field, the magnetic changes caused by a
vehicle’s movement over a very short time can be ignored. Taking the F component of the
geomagnetic anomaly field model NGDC-720 (Maus, 2010) within the scope of (71·312◦,
72·312◦) N, (108·5◦, 109·5◦) E as an example, the average magnetic variation is only about
22·5 nT/km. It is obvious that the magnetic variation is much smaller than the interference
field over a short distance. Therefore, the magnetometer’s measurements over a short time
can be regarded as a random quantity at a position, and the parameter estimation method
can be used to evaluate the statistical characteristics of the magnetic measurements.
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(a) (b)

Figure 4. Constraints of carrier’s movement.

The moment method and maximum likelihood estimation method are most commonly
used in point estimation. In this paper, the first one is applied to estimate mk0 and σ 2.

It is assumed that mk1, mk2, . . . , mkn are the values measured n times at the k-th matching
point, and they follow the Gaussian distribution. Then the moment estimation of mk0 and
σ 2 can be expressed as: {

m̂k0 = 1
n

∑n
i=1 mki

σ̂ 2 = 1
n

∑n
i=1(mki − m̂k0)

(8)

3.4. Constraints of a vehicle’s kinematic performance. If a vehicle’s altitude does
not change during the matching process, the GMA is executed in two-dimensional planes.
Usually, the vehicle’s position at the k-th matching point can be estimated by its kinematic
performance at the (k-1)-th matching point.

(xk−1, yk−1) and (xk, yk) respectively denote the vehicle’s positions at the k-th and (k-1)-
th matching points, then according to its kinematic performance, (xk, yk) can be expressed
as: {

xk = xk−1 + TVk−1 cos θk−1

yk = yk−1 + TVk−1 sin θk−1
(9)

where T is the time between the k-th and (k-1)-th matching points. Vk−1 and θk−1 are
respectively the vehicle’s velocity and course at the (k-1)-th matching point.

Considering the velocity and course error of a vehicle, it is assumed that its velocity is
within [Vmin

k−1, Vmax
k−1], and its course is within [θmin

k−1, θmax
k−1 ]. The former limits the vehicle in

an annulus (denoted by UV in Figure 4(a)), which is determined by two concentric circles
with radii of TVmin

k−1 and TVmax
k−1; the latter limits the vehicle in a sector area (denoted by Uθ

in Figure 4(b)). Therefore, the area of the vehicle’s position Uk can be represented as:

Uk = Uθ ∩ UV (10)
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Rewriting Equation (10) in the form of analysis, the vehicle’s position at the k-th
matching point is: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(xk − xk−1)2 + (yk − yk−1)2 ≥ (TVmin
k−1)2

(xk − xk−1)2 + (yk − yk−1)2 ≤ (TVmax
k−1)2

yk − yk−1

xk − xk−1
≥ tan θmin

k−1

yk − yk−1

xk − xk−1
≤ tan θmax

k−1

(11)

3.5. Calculation of the associated probability. The associated probability is used to
calculate the weight coefficients of all effective estimations of a vehicle’s position, which
is the core of the PDA algorithm. For a normal distribution with a mean of μ0 and variance
of σ 2

0 , the probability that the value falls within the range of (μ0 − βσ0, μ0 + βσ0) is:

P(μ0 − βσ0, μ0 + βσ0) = erf
(

β√
2

)
(12)

where erf (x) is the error function, which is defined as:

erf (x) =

√
2

π

∫ x

0
e−γ 2

dγ (13)

If mk1, mk2, . . . , mkn measured at the k-th matching point obey the normal distribution with
the means of mk0 and variance of σ 2, the probability that the i-th measurement at the k-th
matching point comes from the ideal magnetic value can be calculated:

ωki =
∫ mki

−∞

1√
2πσ

exp
[
− (x − mk0)2

2σ 2

]
dx = 1 − erf

(
mki − mk0√

2σ0

)
, i = 1, 2, . . . , n.

(14)
Define a matrix (A)1×n, where n is the measurement number at the k-th matching point.

Once the matching result satisfies the constraints in Section 3.4, the i-th element in A is
set to 1. Otherwise, the corresponding element is 0. Therefore, the associated probabilities
corresponding to all effective estimations of the vehicle’s positions are:

[ω′
k1, ω′

k2, . . . , ω′
kn] = [ωk1, ωk2, . . . , ωkn]TA (15)

Normalising ω′
ki, the final associated probability of each effective estimation can be

expressed as:

ω′′
ki =

ω′
ki∑n

i=1 ω′
ki

, i = 1, 2, . . . , n. (16)

The final position of the vehicle can be estimated by:

P̂k =
n∑

i=1

Pkiω
′′
ki. (17)

where Pki is the matching result corresponding to the i-th magnetic measurement.
In practice, mk0 and σ 2 can be replaced by their estimations m̂k0 and σ̂ 2, which was

analysed in detail in Section 3.3.
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4. SIMULATION EXPERIMENTS. In order to verify the proposed algorithm, a local
magnetic field was randomly selected from the NGDC-720 model with latitude and
longitude respectively ranging from [55·8◦, 56·8◦] N and [46·0◦, 47·0◦] E. The Kriging
interpolation method (Oliver and Webster, 1990) was used to establish the detailed mag-
netic maps, as shown in Figure 5. After interpolation, the resolution of the geomagnetic
map was 100 m.

4.1. Simulation experiment of the PDA algorithm. It is assumed that the vehicle was
in uniform rectilinear motion at a speed of 35 m/s in an easterly direction and its starting
point was (46·069◦ E, 56·411◦ N). The initial position errors of the INS in latitude and
longitude were both 300 m, and the course error was 0·5◦. When the accumulated error
exceeded 750 m, the fusion algorithm was used for correction.

First, the parameter of the �M-ICCP algorithm was determined according to Xiao et
al’s (2017) method. The results show that the optimal solution of the planned path was:
L = 6, δ = 2 nT, where L refers to matching length and δ is the quantisation step of the
ICCP algorithm. Then, the statistical characteristics of the magnetic measurements at the
calibration point were estimated. Since the measurement results followed a normal distri-
bution (Zhang et al., 2014), the simulation was performed by adding Gaussian noise to the
ideal magnetic value. Assuming that the average and standard deviation of the magnetic
interference were respectively 0 and 5 nT, then 100 samples were randomly selected from
the simulated measurements to estimate the statistical characteristics by Equation (8).

The velocity error and course error of the vehicle were respectively set to 3 m/s and 10◦.
In Section 3.2.1, when the measurement number was different, the PDA fusion algorithm
was implemented multiple times. The matching error is defined as the distance between the
planned path and the estimated position of the vehicle. Table 1 lists the matching errors and
computational time under different conditions. For each condition, three matching results
are listed.

When five measurements are used in the fusion algorithm, the matching error at the first
measurement is 248·98 m, which is too large to correct the INS’s accumulated error. At the
second measurement, as the matching results of the �M-ICCP algorithm are all beyond
the vehicle’s restrained scope, the fusion result is invalid. Nevertheless, the matching error
at the third time is 149·36 m, which is much better than the first time. When the number
of measurements increases to 15, the matching result is improved to some extent, but the
matching errors for three measurements are very different and the stability is poor. When
the number of measurements reaches 50, the matching accuracy and stability are generally
improved, but the computational time is multiplied. When the number of measurements is
70, the results are consistent with the above analysis.

In short, the PDA fusion algorithm is greatly affected by the accuracy of the mag-
netic measurement, and the improvement of its accuracy is at the cost of losing real-time
performance.

4.2. Simulation experiment of the RM-PDA fusion algorithm. The RMs are used in
the RM-PDA algorithm to overcome the shortcomings of the PDA algorithm. According
to the method in Section 3.2, 13 RMs are respectively generated at m̂k0, m̂k0 ± 1

2 σ̂ , m̂k0 ±
σ̂ , m̂k0 ± 3

2 σ̂ , m̂k0 ± 2σ̂ , m̂k0 ± 5
2 σ̂ and m̂k0 ± 3σ̂ . The vehicle’s planned path and other

simulation conditions are the same as in Section 4.1.
To fully verify its performance, the RM-PDA algorithm is also compared with other five

algorithms, namely the �M-ICCP algorithm with ideal magnetic value, the MAGCOM
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Figure 5. The geomagnetic map of a local area.

Table 1. Matching results when numbers of measurements are different.

1st time 2nd time 3rd time

Measurement number e/m t/s e/m t/s e/m t/s

5 248·98 0·65 NaN NaN 149·36 0·63
15 111·48 1·89 75·17 1·84 175·93 1·93
50 84·20 6·32 94·17 6·24 102·92 6·17
70 31·61 9·14 54·48 9·32 91·72 9·42

algorithm, the ICCP algorithm with magnetic interference, the �M-ICCP algorithm with
interference and the PDA fusion algorithm with interference. The number of measurements
of the PDA algorithm is the same as for the RM-PDA algorithm. Considering the compen-
sation effect (Liu et al., 2016), the standard deviations of the magnetic interference are set
as 1 nT, 3 nT, 5 nT, 7 nT and 9 nT.

All algorithms are executed multiple times, Figure 6 shows their matching errors (in
logs) at each time, and Table 2 lists the average matching errors of 13 repetitions.

When there is no interference, the matching error of the �M-ICCP algorithm is 11·65 m,
in a very stable state. While different interferences exert a large influence on the ICCP,
MAGCOM and �M-ICCP algorithms, their matching results indicate large uncertainty
in interference fields. In Figure 6, some of their matching errors are even larger than the
accumulated error of the INS. This means that the matching algorithm has diverged and
is unavailable to correct the INS. When the standard deviation of magnetic interference
is 1 nT, most of the results of MAGCOM algorithm are effective, but when the standard
deviation is larger than 3 nT, its performance is significantly reduced. In addition, when
the interference standard deviation is 8 nT and 9 nT, the MAGCOM, ICCP and �M-ICCP
algorithms show little difference. This illustrates that these algorithms are unavailable if the
interference is too strong.

In contrast, the accuracy of the PDA algorithm has been improved to some extent, and
the matching results are convergent under different conditions, but its anti-interference per-
formance and accuracy still need to be enhanced. The RM-PDA algorithm, however, has

https://doi.org/10.1017/S0373463319000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000535


NO. 1 AN IMPROVED ICCP MATCHING ALGORITHM UNDER INTERFERENCE 67

(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparisons of different algorithms under different interferences.

the highest accuracy under different interferences and shows better anti-interference per-
formance and stability. Therefore, the RM-PDA algorithm is available to modify the INS’s
accumulated error.
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Table 2. Average matching errors of different algorithms.

Ideal value ICCP MAGCOM �M-ICCP PDA RM-PDA
Interference std/nT e/m e/m e/m e/m e/m e/m

1 11·65 169·42 458·25 103·81 28·99 12·71
3 11·65 569·03 815·15 483·13 67·74 17·08
5 11·65 546·35 834·16 462·79 102·77 23·64
7 11·65 771·268 1015·30 672·52 105·31 43·21
8 11·65 1079·63 1173·78 1015·38 144·87 44·69
9 11·65 1171·14 1184·27 976·90 191·02 46·01

Figure 7. Matching probabilities of different algorithms.

4.3. Matching probabilities of different algorithms. Matching Probability (MP)
(Huynh et al., 2017) measures the reliability of the matching results. Once the geomag-
netic matching area and interference field are confirmed, the MP can be used to evaluate
the algorithm’s performance. However, its definition is not currently unified. In this paper,
according to Inglada and Giros’s (2004) method, MP is defined as the correct registration
rate, namely:

PMA =

∑
p∈MA N (p)

NMA
(18)

where MA is a selected matching area, and NMA represents the total number of matchings
in MA.

∑
p∈MA N (p) counts the successful matches, and p is a reference point. In the

matching process, each grid point in the MA is used as a reference point to participate in
the matching algorithm.

A number of areas with a size of 2 km × 2 km were randomly selected from the NGDC-
720 model, and the MPs of different algorithms were calculated under different conditions.
Suppose that the matching length is 5, and the quantisation step of the �M-ICCP algorithm
is 1 nT. The other parameters are the same as in Section 4.1. When the matching error is
less than 200 m, the matching is considered to be successful. Figure 7 shows the MPs of the
area whose longitude range is 56·082◦ ∼ 56·101◦ N, latitude range is 46·320◦ ∼ 46·339◦ E.
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Table 3. Algorithm comparison results on another path.

Interference Ideal value ICCP MAGCOM �M-ICCP PDA RM-PDA
std/nT e/m e/m e/m e/m e/m e/m

1 13·06 212·34 674·36 179·76 33·95 15·66
3 13·06 775·39 822·11 487·98 92·12 32·82
5 13·06 1,136·46 952·44 783·82 110·67 37·70
7 13·06 771·27 1211·70 675·75 102·08 43·21
8 13·06 1,417·86 1250·29 1104·20 272·69 93·46
9 13·06 1,571·03 1353·37 1049·56 252·26 59·76

The results show that when the standard deviation of the interference is under 0·5 nT,
both the ICCP algorithm and �M-ICCP algorithm are reliable, and their MPs are close to 1.
When the interference increases, the MPs decline significantly at first, and then gradually
tail to 0. On the other hand, the MPs of �M-ICCP algorithm are slightly higher than the
ICCP algorithm under different conditions, which is mainly because the former uses more
magnetic information when their matching lengths are the same. In contrast, when the
interference standard deviation is between 0·1 nT and 3 nT, the MPs of RM-PDA algorithm
are all equal to 1, which means that even if the interference field affects the matching
algorithm, all the matching errors are within the pre-set threshold. Although the MP of
the RM-PDA algorithm reduces with increasing interference, its performance is still better
than the other two algorithms. In short, the RM-PDA algorithm has better performance as
a whole under different interferences.

4.4. Algorithm comparison on another path. In order to further analyse the perfor-
mance of the proposed algorithm, 50 geomagnetic areas were randomly selected according
to different magnetic environments. Taking one of these areas as an example, the following
shows the matching process.

The simulation parameters were set as follows: the vehicle was in uniform rectilin-
ear motion at a speed of 35 m/s from point (46·439◦ E, 56·361◦ N), the angle between its
moving direction and east was 30◦. The initial position errors of the INS in latitude and lon-
gitude were both 300 m, and the course error was 1◦. When its accumulated error exceeded
500 m, the fusion algorithm was used to correct it.

According to Xiao et al.’s (2017) method, at the calibration point of this path, the optimal
matching length (L) and quantisation step (δ) were: L = 5, δ = 3 nT. Then the statistical
characteristics of the magnetic measurements at the calibration point were estimated and
the PDA algorithm and RM-PDA algorithm were executed. In the RM-PDA algorithm, the
velocity error and course error were respectively set to 3 m/s and 10◦.

Table 3 lists the average matching errors for 12 times matching. As shown, when there
is no interference, the matching error of the �M-ICCP algorithm was 13·06 m. Although
the �M-ICCP algorithm shows smaller matching errors, the performances of the ICCP
and �M-ICCP algorithms reduced significantly with the increase of interference. When
the standard deviation of interference was larger than 3 nT, the matching error of ICCP
was 775·39 m, which exceeded the accumulated error of INS. This also shows that most
results of the MAGCOM algorithm were ineffective. In contrast, the matching results of the
PDA and RM-PDA algorithms were all effective. Meanwhile, all the errors of the RM-PDA
algorithm were in one magnetic grid (100 m), and the results were more stable.
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Figure 8. The semi-physical system.

Figure 9. K-S test of magnetometer measurements.

The above analysis is consistent with the results in Section 4.2. Simulation experi-
ments prove that the conclusions still hold in other geomagnetic areas. As a result, the
effectiveness of the proposed algorithm is verified.

5. SEMI-PHYSICAL EXPERIMENTS. In order to test the proposed algorithm in a rel-
atively real environment, a semi-physical verification system was constructed. As shown
in Figure 8, the system mainly consists of five parts: a three-axis Helmholtz coil, a high-
precision current source, a magnetometer, a magnetic simulation computer and a navigation
computer. Their functions and parameters were as follows:

The three-axis Helmholtz coil was used to simulate the geomagnetic environment.
The Helmholtz coil used in this study can generate a magnetic field from −20,000 nT to
20,000 nT.

https://doi.org/10.1017/S0373463319000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000535


NO. 1 AN IMPROVED ICCP MATCHING ALGORITHM UNDER INTERFERENCE 71

(a) (b)

(c) (d)

(e) (f)

Figure 10. Matching results of semi-physical system in different conditions.

The high-precision current source was used to generate current and control the magnetic
field in the Helmholtz coil. The system used a KEITHLEY 6220 current source that can
produce a DC current from 100 fA to 100 mA.

The magnetometer was placed in the Helmholtz coil to measure the magnetic field inside
the coil. The resolution of the magnetometer was 1 nT.
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Table 4. Matching errors in different conditions.

Interference Ideal value PDA RM-PDA
std/nT e/m e/m e/m

1 11·65 240·41 34·92
3 11·65 288·64 36·48
5 11·65 323·55 52·89
7 11·65 378·78 31·66
8 11·65 301·90 67·01
9 11·65 294·14 98·98

The magnetic simulation computer was used to calculate the magnetic values on the
planned path based on the geomagnetic model, and the corresponding current was cal-
culated according to the relationship between the magnetic field and the current in the
Helmholtz coil.

The navigation computer was used to plan the vehicle’s path, record the magnetometer’s
outputs, implement the GMA and correct the INS’s accumulated error.

The semi-physical verification system was placed in the laboratory, and the surrounding
electromagnetic devices and the magnetometer affected the magnetic measurements. It was
assumed that other kinds of interference fields follow a normal distribution, which were
added to the Helmholtz coil through the current source.

The vehicle was assumed to move along the path in Section 4.1, its course error was
0·5◦ and the initial position errors of the INS in longitude and latitude are both 300 m.
Other simulation parameters were the same as in Section 4.1. As the planned path and
calibration point do not change, L = 6 and δ = 2 nT are still the optimal parameters of the
�M-ICCP algorithm.

Different interferences were added to the Helmholtz coil and the magnetometer’s outputs
were recorded. Since the distribution of the real measurements was unknown, moment
estimation and the Kolmogorov-Smirnov (K-S) test (Al-Labadi and Zarepour, 2017) were
used to evaluate and verify the statistical characteristics. Figure 9 compares the Cumulative
Distribution Function (CDF) of the normalised measurements in one experiment with the
standard normal distribution. It was proved that the magnetometer’s measurements still
obey the normal distribution in the laboratory environment and under the interference of
normal distribution. It also shows that the estimated statistical characteristics are valid.

Based on the estimated characteristics, the PDA and RM-PDA algorithms were respec-
tively conducted. The RMs of the RM-PDA algorithm remained unchanged. The measure-
ments of the PDA algorithm were randomly selected, and the number of them were the
same as the RM-PDA algorithm. Figure 10 and Table 4 record the matching results in
different conditions.

Many other simulation and semi-physical experiments have been carried out and the
above conclusions were valid with regard to these results as well.

6. CONCLUSIONS. In order to enhance the accuracy and anti-interference perfor-
mance of the ICCP algorithm, the delta modulation and PDA algorithm were applied. The
feasibility and effectiveness of the algorithm were verified by simulation and semi-physical
experiments. The main contributions of this paper are as follows:
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(1) The �M-ICCP algorithm can assess the GMS to participate in the matching process
and find the optimal matching length, which guarantees the accuracy and real-time
performance of the proposed algorithm.

(2) Based on the estimated statistical characteristics of the magnetic measurements, the
RM-PDA algorithm regenerates a certain number of measurements for matching,
which enhances the anti-interference performance and stability of the algorithm.

The interference field that satisfies the Gaussian distribution is added to the geomagnetic
model, and the instrument error and the interferences in the laboratory are considered in
this paper. However, in practice, the magnetic environment is more complicated. In future
studies, the proposed algorithm will be fully evaluated in a real environment.
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