
European Journal of Applied Mathematics (2024), 35, pp. 662–674
doi:10.1017/S0956792523000360

PAPER

Recurrent and chaotic outbreaks in SIR model
Chunyi Gai1, Theodore Kolokolnikov2, Jan Schrader2 and Vedant Sharma3

1Department of Mathematics, University of British Columbia, Vancouver, Canada, 2Department of Mathematics and Statistics,
Dalhousie University Halifax, Nova Scotia, Canada and 3Indian Institute of Science, Bangalore, India
Corresponding author: Theodore Kolokolnikov; Email: tkolokol@gmail.com

Received: 24 August 2023; Revised: 17 December 2023; Accepted: 19 December 2023;
First published online: 18 January 2024

Keywords: SIR model; recurrent outbreaks; discrete maps, period doubling

2020 Mathematics Subject Classification: 92-xx (Primary); 92D30 (Secondary)

Abstract
We examine several extensions to the basic Susceptible-Infected-Recovered model, which are able to induce recur-
rent outbreaks (the basic Susceptible-Infected-Recovered model by itself does not exhibit recurrent outbreaks). We
first analyse how slow seasonal variations can destabilise the endemic equilibrium, leading to recurrent outbreaks.
In the limit of slow immunity loss, we derive asymptotic thresholds that characterise this transition. In the outbreak
regime, we use asymptotic matching to obtain a two-dimensional discrete map which describes outbreak times
and strength. We then analyse the resulting map using linear stability and numerics. As the frequency of forcing is
increased, the map exhibits a period-doubling route to chaos which alternates with periodic outbreaks of increas-
ing frequency. Other extensions that can lead to recurrent outbreaks include the addition of noise, state-dependent
variation and fine-graining of model classes.

1. Introduction
An SIRS model (Susceptible-Infected-Recovered) is the simplest epidemic model describing the trans-
mission of an infectious disease within a population and is the basic building block of mathematical
epidemiology. In its most simple form, the basic SIR model is

St = −βSI + εR

It = βSI − γ I (1.1)
Rt = γ I − εR.

Here, β is the transmission rate, γ is the rate of recovery from infection, and ε is the rate of loss of
immunity. Typically, the loss of immunity happens on a much slower timescale (e.g. years) than infection
(e.g. days), and for this reason, we are primarily interested in the regime of small ε.

The behaviour of the basic SIR model (1.1) – with constant parameters β, ε, γ – is well understood.
Despite its simplicity, the basic SIR model and its variants are able to reproduce the progression of
epidemic, at least on relatively short timescales [1–5]. On short timescales, the loss of immunity is
often discarded (i.e. ε = 0); the result is typically an epidemic outbreak, where most (but not all) of
susceptibles become infected, followed by a recovery period. When loss of immunity is allowed (ε > 0),
several outbreaks are possible (especially for very small ε), but the dynamics eventually converge to a
stable endemic equilibrium, as illustrated in Figure 1 (row 1).

Ultimately, the basic SIR model with constant parameters is unable to reproduce repeated epidemic
outbreaks [3]. In this paper, we examine several mechanisms which are able to reproduce multiple
outbreaks, including both periodic and chaotic outbreaks. These are:
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Figure 1. Simulations of (2.1) with β(t) = β0 + a cos (ωεt) for several values of a as shown. Other
parameters are β0 = 1, ω = 2π , γ = 0.5, ε = 0.001. Initial conditions were taken to be I(0) = 0.01,
S(0) = 0.99. Row 1: constant β, damped oscillations towards steady state are observed. Row 2:
Convergence towards an adiabatic state. Row 3: Convergence towards adiabatic equilibrium with
damped oscillations. Row 4: Onset of small periodic oscillations. Row 5: Large periodic outbreaks.
J0 is defined in (2.7).

(a) Seasonal variation, such as time-periodic infection rate β = β(t). It has been well documented that
infectious diseases often have infection rates β(t) which are correlated to the seasons, and adding
this variation can lead to very complex outbreak dynamics [2, 6–10].

(b) Introduction of sufficient noise into the system or stochastically driven parameters [10–12].
(c) State-dependent parameters, such as an infection rate which is suppressed in the presence of infec-

tion (e.g. through public health measures), but is relaxed back to a natural rate β0 after the outbreak
passes.

(d) Multiple components for the recovered class and reinfection from the recovered class [2, 13].

In this paper, we mostly concentrate on seasonal parameter variations (a). The study of periodic
outbreaks has a long history; here we mention but a few references. In [2], London and Yorke estimated a
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seasonally varying contact rate β(t) to simulate annual outbreaks of chickenpox and mumps and biennial
outbreaks of measles. Paper [8] considered sinusoidal forcing for a similar model in the high-frequency
regime (large ω) and found both periodic and chaotic outbreaks. In paper [12], the authors use data-
fitting algorithms to ‘discover’ time-periodic parameters which best fit the incidence data for Measles,
Varicella and Rubella. A recent paper [9] studied the periodic solution using asymptotic methods. We
will be using a similar approach in Section 3.

Let us summarise the results. Consider sinusoidal infection rate of the form

β(t) = β0 + a cos(ωεt) ; (1.2)

this is meant to model a seasonal variation in the infection rate. The scaling ωεt is chosen so that
timescale of seasonal change is comparable with the timescale of immunity loss εt. Figure 1 shows what
happens when a is used as a control parameter. When a = 0, the endemic equilibrium state is stable. In
fact as we will see in Section 2, slowly decaying oscillations converge to endemic equilibrium in the
limit ε → 0. Increasing a may eventually destabilise the equilibrium. A simple criterion for the thresh-
old value at which this destabilisation occurs is derived in Section 2 (see (2.9)). Instability of endemic
state results in a wave of infections as illustrated in Figure 1 (bottom). In Section 3, we use asymptotic
matching to obtain a two-dimensional discrete map which describes outbreak times and strength. In
Section 4, we analyse the resulting discrete map using linear stability and numerics. As the frequency of
forcing is increased, the map exhibits a period-doubling route to chaos which alternates with periodic
outbreaks of increasing frequency. In Section 6, we use numerics to illustrate how extensions (b-d) can
also lead to complex dynamics. Some open questions are discussed in Section 7.

2. Onset of recurrent outbreaks with periodic β

As shown in Figure 1, large periodic outbreaks appear when β has ‘sufficient variation’ (row 4). This is
in contrast to the ‘slow variation’ of the adiabatic steady state (time-dependent equilibrium) as illustrated
in Figure 1 (row 2). Our first task is to quantify this dichotomy.

We start with a standard simplification of the system (1.1) by noting that the total population S + I + R
is conserved in time. For convenience, we rescale the total population to one, so that S + I + R = 1.
Eliminating R from (1.1), we then obtain an equivalent two-dimensional system

St = −βSI + ε(1 − S − I) ,

It = (βS − γ )I. (2.1)

First consider the case of constant β, γ . The endemic equilibrium is then given by

Seq = γ

β
; Ieq = ε

β

(β − γ )

γ + ε
. (2.2)

Here and below, we will assume that β > γ ; on the contrary case, there is no (positive) endemic
equilibrium and the system converges to the disease-free equilibrium I = 0, S = 1.

Linearisation around the endemic equilibrium yields the Jacobian matrix

M =
[−βIeq − ε −γ − ε

βIeq 0

]
.

Since tr(M) = −ε β+ε

γ+ε
< 0 and det(M) = ε(β − γ ) > 0, the endemic equilibrium is stable for all param-

eter values. Nonetheless, a sequence of decaying outbreaks is apparent in Figure 1 (row 1). This is due
to the fact that for small ε, the eigenvalues of M are approximately given by

λ ∼ √
ε

(
±i
√

β − γ −
√

ε

2

β

γ

)
, ε � 1.
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and are dominated by their purely imaginary part, with a small negative real part. This explains the
slowly decaying oscillations towards the endemic equilibrium in this regime.

To explain the transition towards periodic outbreaks, we consider the slow time

y = εt. (2.3)

In addition, the endemic equilibrium has Ieq = O(ε) so we also rescale

I = εJ

to obtain the system

Sy = (−βJ − 1)S + 1 − εJ

εJy = (βS − γ ) J (2.4)

Assuming that the system remains close to the endemic equilibrium, we expand in powers of ε as

J = J0 + εJ1 + . . . ; S = S0 + εS1 + . . . . (2.5)

At leading order we then obtain

S0 = γ /β; (2.6)

J0 = 1 − S0 − S′
0

β0S0

= 1

γ
− 1

β
+ β ′

β2
. (2.7)

It is here that the effect of the slow adiabatic change becomes apparent: the first two terms of J0 are
the same as the time-independent equilibrium (2.2) but the term β ′ can make J0 negative. When this
happens, the adiabatic approximation breaks down and instability ensues, leading to periodic outbreaks.
The onset of periodic outbreaks therefore corresponds to the double-root condition:

J0(y) = 0 = J′
0(y). (2.8)

A simple Maple computation, eliminating y from (2.8), yields the following cubic equation in a2 for
the threshold values of the parameters:

0 = 16ω2a6 + ((
8ω4 − 20ω2 − 1

)
γ 2 + 48β0ω

2γ − 48β2
0 ω

2
)

a4 +
((

ω2 + 1
)3

γ 4

−2
(
10ω2 + 1

) (
ω2 + 1

)
β0γ

3 + 2β2
0

(
10ω4 + 35ω2 + 1

)
γ 2 − 96β3

0 ω
2γ + 48β4

0 ω
2
)

a2 (2.9)

− (
ω2 + 1

)2
β2

0γ
4 + 2β3

0

(
ω4 + 10ω2 + 1

)
γ 3 − β4

0

(
ω4 + 50ω2 + 1

)
γ 2 + 48β5

0 ω
2γ − 16β6

0 ω
2.

For example when β0 = 1, γ = 0.5, and ω = 2π , (2.9) yields a = 0.1446. This is in agreement with the
observed values of the onset of the periodic outbreaks in Figure 1 with ε = 0.001

Figure 2(a) shows the comparison between the threshold boundary (2.9) and full numerics. Here, we
took β0 = 1, γ = 0.5. and plotted the implicit curve (2.9) in the a − ω plane (shown in dashed line). To
compare with full numerics, for each choice of a = 0, 0.01, 0.02, . . . , 0.5 and ω = 0, 0.4, 0.8, . . . , 20,
the solution was computed up to time t = 30, 000. The solution was deemed to have an outbreak if
maxI(t)

minI(t)
> 1000. The choice of ‘1000’ is rather arbitrary and the overall picture barely changes if it is

replaced by ‘10,000’ or ‘100’.
Overall, the agreement looks very good, although the asymptotic prediction is degraded for suffi-

ciently large ω and small a (top left corner of Figure 2). A different asymptotic scaling may be required
to more accurately capture the numerics in that regime; we leave it as an open problem for future work.

The method for computing this threshold is rather general. For example, a simpler computation is to
take β constant and vary γ periodically:

β(t) = β, γ (t) = γ0 + a cos(ωεt) . (2.10)
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Figure 2. Comparison of asymptotic prediction for the outbreak boundary and full numerics. (a)
Periodic β(t). Dashed curve shows the threshold boundary in the a − ω parameter space given by
(2.9), with β = 1 + a cos (ωεt), γ = 0.5. Orange and blue regions correspond to outbreak (unstable)
and endemic (stable) regions, respectively, as computed using the full numerical simulations of the
full model (1.1) with ε = 0.001. See text for details. (b) Periodic γ (t). Dashed curve shows the thresh-
old boundary as given by (2.11) with β = 1, γ = 0.5 + a cos (ωεt).Full numerics are as in part (a),
computed with ε = 0.001.

The threshold is then obtained as previously, by setting J0 = 0 = J′
0 and eliminating y. In this case, the

threshold is given by a much simpler formula:

a2
(
1 + ω2

)= (β − γ0)
2 (2.11)

as shown in Figure 2(b).

3. Return map
Beyond the onset threshold described in Section 2, recurrent outbreaks are observed. These outbreaks
are ‘localised’ in time, followed by a long relaxation period. They may be periodic (commensurate with
periodic variation in β) or chaotic, depending on parameter values. Such separation of scales allows
for matched asymptotic analysis in order to reduce the system to a discrete ‘return map’ describing the
timing and size of the subsequent outbreaks.

Figure 3 shows typical ‘outbreak’ dynamics and separation of scales. The dynamics have two
timescales: the outbreak (‘inner’ region), characterised by relatively large values of infection I and a
sharp drop in S, followed by the ‘outer’ region, characterised by exponentially small values of I and a
gradual increase of S due to a slow immunity loss. The inner region occurs at O(1) timescale whereas
the outer region occurs on O(1/ε) timescale. Let ti be the time of outbreak i, and define yi = εti. Let
S+

i (resp. S−
i ) be the susceptible population at the onset (resp. after) of outbreak i. Refer to Figure 3.

We now construct both inner and outer regions, then glue them together to obtain the desired discrete
return map.

Inner region. Assuming that ε is very small, on the scale of the outbreak, the immunity loss terms
εR can be disregarded. Therefore during the time of the outbreak i, the ‘inner region’ becomes just the
simplest SI model. Namely, we let

t = ti + τ , βi := β(ti);
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Figure 3. Inner-outer structure of the recurrent outbreaks solution and definition of various quantities
that define the discrete return map.

Then to leading order, we have the following governing equations for the ‘inner’ region:
dS

dτ
= −βiSI,

dI

dτ
= βiSI − γ I

lim
τ→±∞

S(τ ) → S∓
i ; lim

τ→±∞
I(τ ) = 0

This is the usual SI model, where the recovered class is removed from the system. We then have
dI
dS

= −1 + γ

βi

1
S

which gives the first integral

I = S+
i − S + γ

βi

log
S

S+
i

and correspondingly, we obtain following relation between S±
i :

0 = S+
i − S−

i + γ

βi

log
S−

i

S+
i

. (3.1)

Outer region. Next, we look at the ‘outer’ region t ∈ (ti, ti+1), characterised by exponentially small
amount of infection I � 1. The extent of this latent region is of O(1/ε). It is therefore appropriate to use
the scaling

yi = εti

and furthermore, we define a variable z to be an ‘outer’ time variable shifted so that ‘initial time’ z = 0
corresponds to t = ti:

t = ti + ε−1z.

Then, yi, z = O(1). Equations (1.1) then become

εSz = −β̂(z)SI + εR (3.2)

εIz =
(
β̂(z)S − γ

)
I (3.3)

εRz = γ I − εR (3.4)

where

β̂(z) = β(yi + z) = β0 + a cos(ω(yi + z)) .

In the outer region, we assume that I is exponentially small compared to S and R so that to leading order,
(3.2) and (3.4) become

Rz ∼ −R, Sz ∼ R,
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Figure 4. Comparison between the full ODE (2.1) simulation (left) and the discrete return map (right).
The ode (2.1) was solved with β(t) = 1 + a cos (4πε), γ = 0.5, ε = 0.001. The parameter a was grad-
ually ramped up using the formula a = 0.1 + 10−7t with t = 0 . . . 106. Forward Euler method was used
with timestep dt = 0.1 Maxima of S(t) as plotted versus a. Right: Iterations of the return map (3.1) (3.7)
and (3.8). Here, 4000 iterations are plotted, while gradually increasing a according to the formula
ai = 0.1 + 0.1 i

imax
; here, i is the iteration number and imax = 4000..

having solutions

R ∼ (1 − S−
i )e−z; S = 1 − R. (3.5)

Substituting (3.5) into (3.3) yields the equation for I in the outer region:

I ∼ C exp

⎧⎨
⎩1

ε

z∫
0

{
β̂(z)

(
1 − (1 − S−

i )e−z
)− γ

}
dz

⎫⎬
⎭ (3.6)

Matching. The outer region ends (and the next outbreak begins) when I changes from exponentially
small to O(1). This yields yi+1 as a function of yi:

yi+1 = yi + di,

where
di∫

0

{
β0 + a cos(ω0yi + ω0z)

(
1 − (1 − S−

i )e−z
)− γ

}
dz = 0. (3.7)

Finally, from (3.5) we obtain

S+
i+1 = 1 − (1 − S−

i )e−di (3.8)

Together, equations (3.1) (3.7) and (3.8) define a ‘return map’.
Figure 4 shows the comparison between the full numerical solution of the ODEs and the asymptotics

(3.1) (3.7) (3.8). Overall, a good agreement is observed. Note that S±
i , as defined via the asymptotic

discrete return map, is independent of ε, whereas the ODEs do depend on ε.
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Figure 5. (a) Transitions between k = 1 periodic solution (ω = 3) and k = 2 solution (ω = 4).
Parameters are β0 = 1, a = 0.5, γ = 0.7, ε = 0.001, and ω as indicated. (b) Plot of the shift s ver-
sus ω. Other parameters are β0 = 1, a = 0.5, γ = 0.7. Red dots denote the locations of the fold points.
(c) Bifurcation diagram of the discrete return map, as ω is slowly ramped up. Dashed curves overlay the
location of the fixed points corresponding to k = 1 . . . 4 from (b) The stable branch is between the red
point ωf and the cyan point ωc. The solutions in (a) correspond to the values of ω denoted by vertical
lines in (c).

4. Periodic outbreaks and stability
A periodic train of outbreaks such as shown in Figure 5(a) (top or bottom) corresponds to a fixed
point of the discrete return map derived in Section 3. Since β(y) = β0 + a cos(ωy) is periodic with
frequency ω, any such periodic solution must have its period commensurate with this frequency. Such
solution has the form

S±
i = S±; yi = s + 2πki/ω, k ∈N

where the integer k counts the number of periods of β(y) per outbreak (i.e. k ‘years’ per single outbreak),
and s is the ‘shift’ between the location of the outbreak and the maximum of β. Substituting these
conditions into the discrete map yields the following conditions for the fixed point of period 2πk/ω:

0 =
2πk/ω∫
0

{
β(s + y)

(
1 − (1 − S−)e−y

)− γ
}

dy; (4.1)

S+ = 1 − (1 − S−)e−2πk/ω (4.2)

0 = S+ − S− + γ

β(s)
log

S−

S+ (4.3)

An example of such a fixed point with k = 1 and 2 is shown in Figure 5(a).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792523000360
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 05:33:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792523000360
https://www.cambridge.org/core


670 C. Gai et al.

We eliminate S± from the system (4.1), (4.2) as follows:

S− = 1 −
∫ 2πk/ω

0
{β(s + y) − γ } dy∫ 2πk/ω

0
β(s + y)e−ydy

; S+ = 1 −
∫ 2πk/ω

0
{β(s + y) − γ } dy∫ 2πk/ω

0
β(s + y)e−ydy

e−2πk/ω. (4.4)

This results in a single algebraic equation for s (4.3). Solving the resulting equation numerically, we
found at most two fixed points for each k = 1, 2, . . . . Figure 5(b) shows the bifurcation diagram ω vs.
s for k = 1, . . . , 7. For a given k, there is a fold point ωk such that the two branches exist if and only if
ω > ωk.

Note how multiple possible fixed points can coexist for a single value of ω; for example there are four
when ω = 5 (two with k = 1 and two with k = 2). However, only one solution appears to be stable (the
upper branch of k = 2 when ω = 5). Figure 5(c) shows the dynamics of the return map as well as the
fixed points, as ω is gradually increased. As ω is increased, successive steady states k = 1, 2, 3 . . . lose
stability, and the solution transitions to the next value of k.

5. Stability
Each branch (indexed by k) in Figure 5(b) starts at the fold point ω = ωf where the two solutions in
the s − ω plane meet. This is indicated by red circles. As ω is increased, eventually each branch loses
its stability at some ω = ωc, indicated by cyan circle in the figure. To compute ωc, we linearise around
periodic states (indexed by k) of the return map. Let

yi = s + 2πki/ω + ξi, S±
i = S± + φ±

i ,

where S± are as given by (4.3). Linearising the return map we obtain, after some algebra,(
ξi+1

φ+
i+1

)
=
(

A B

C D

)(
ξi

φ+
i

)
,

where

A = 1 −
∫ 2πk

w

0
β ′(s + z) (1 − (1 − S−)e−z) dz

β(s)
(
1 − (1 − S−)e− 2πk

w
)− γ

+
∫ 2πk

w

0
β(s + z)e−zdz

β(s)
(
1 − (1 − S−)e− 2πk

w
)− γ

γβ ′(s) log
(

S−
S+
)

β2(s) − γβ(s)
S−

, (5.1)

B = −
∫ 2πk

w

0
β(s + z)e−zdz

β(s)
(
1 − (1 − S−)e− 2πk

w
)− γ

β(s) − γ

S+

β(s) − γ

S−
, (5.2)

C = e− 2πk
w

(
S− − 1 − γβ ′(s) log

(
S−
S+
)

β2(s) − γβ(s)
S−

)
− e− 2πk

w (S− − 1)A, (5.3)

D = e− 2πk
w

β(s) − γ

S+

β(s) − γ

S−

{
1 −

∫ 2πk/ω

0
{β(s + z) − z} dz

β(s)
(
1 − (1 − S−)e− 2πk

w
)− γ

}
. (5.4)

The eigenvalues λ± of the matrix

(
A B

C D

)
determine the stability of the system. A steady state is

stable if |λ±| < 1. At the threshold ω = ωc, the Hopf bifurcation is observed corresponding to the point
in parameter space where |λ±| = 1.

Figure 5(c) shows that ωc for branch k occurs before ωf for branch k + 1. So while multiple equilibria
coexist (corresponding to different values of k), it appears that at most one equilibrium is stable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792523000360
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 05:33:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792523000360
https://www.cambridge.org/core


European Journal of Applied Mathematics 671

Figure 6. Effect of stochasticity on recurrent outbreaks. Simulation of (2.1) and (6.1) with
β0 = 1, γ = 0.5, a = 0.001, b = 0.01 and with ε as indicated. Same stochastic path for β was used in all
three simulations. Top: the endemic state S ‘follows’ γ /β without major outbreaks. Middle: decreasing
ε induces some outbreaks. Bottom: even smaller ε results in recurrent outbreaks.

6. Other models with periodic and/or chaotic outbreaks
6.1. Stochastically induced outbreaks

Instead of periodically varying parameters, recurrent outbreaks can be triggered simply when there is
enough noise in the system. The precise nature of noise is not as important as the magnitude of the noise
relative to the immunity loss rate ε. Every biological system has inherent noise; the question is how
much noise is enough to cause the outbreak. To be concrete, consider the parameter β(t) which evolves
according to an Ornstein–Uhlenbeck process:

dβ

dt
= a(β0 − β) + b

dW

dt
. (6.1)

Here, dW = ξ
√

dt where ξ is the iid normal distribution; a is the strength of attraction of β towards
the ‘base’ state β0 and b is the standard deviation of the Brownian drift. Figure 6 shows simulations
of (2.1), (6.1) for several values of ε, with other parameters as indicated. For each run, we used the
same trajectory for β (which here is independent of ε). For larger values of ε, the stochastic fluctuations
are observed, but overall the endemic state ‘follows’ β(t) without producing big outbreaks: the blue
curve follows the black. However for smaller ε, the equilibrium state has difficulty ‘catching up’ to the
fluctuations in β, and this tends to produce large recurrent outbreaks. Overall, it is the ratio of noise level
b compared to immunity loss rate ε that determines whether recurrent outbreaks appear. The analysis
of this phenomenon (how much noise is needed to trigger outbreaks) is left for future work.

6.2. Public health measures

Consider a model where the infection rate β is temporarily adjusted in response to an outbreak. This
can be due to, e.g., stay-at-home measures, social distancing etc. These restrictions are eventually lifted
when the outbreak passes. For concreteness, we consider β to depend on S via an ODE
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Figure 7. Periodic outbreaks for model (6.2) using parameters (6.3).

dβ

dt
= a(F(S) − β) (6.2)

where F(S) is a sharp transition function such that F(S) ∼ β+ for S > S0 and F(S) ∼ β− for S < S0. More
concretely, take

γ = 0.5, ε = 0.01, F(S) = 1

2
+ 1

2
tanh (10(S − 0.7) )), a = 1. (6.3)

Then, β+ = 1, β− = 0. This control means that β quickly approaches 0 when 30% of the population
becomes infected, but goes back to 1 as epidemic passes. Figure 7 shows the resulting dynamics with
periodic outbreaks.

More complex models can be considered where β is controlled by I and/or R, but generally similar
phenomenon results. While this model is able to generate periodic outbreaks, we were unable to get
chaotic outbreaks, even after playing with more complex models of this type.

6.3. Multiple recovered classes

Recurrent infections can occur if we refine either infection and/or recovery class. Consider the following
model with n recovery classes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −βsIS + μnRn

dI

dt
= βsIS +∑

βiIRi − γ I

dR1

dt
= −β1IR1 + γ I − μ1R1

dRi

dt
= −βiIRi + μi−1Ri−1 − μiRi, i = 2 . . . n

(6.4)

In this model, there are multiple recovered classes representing a more granular view of loss of immunity
with time. Reinfection can also occur among the ‘recovered’ classes with different reinfection rates βi.
When n = 1, this model reduces to a 3-component SIR model with reinfection rate β1; such model is too
simple to exhibit oscillatory behaviour (similar to analysis in Section 2, it is easy to show that when n = 1,
the endemic state is always stable when the disease-free equilibrium is unstable). However even when
n = 2, recurrent outbreaks become possible. As an example, take n = 2, (β1, β2, βs) = (1, 0, 1) , γ = 0.7,
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Figure 8. (a) Model (6.4) illustrating sustained persistent outbreaks with n = 2, (βs, β1, β2) =
(1, 1, 0), γ = 0.7, μ1 = μ2 = 0.01. (b) Model (6.4) with γ as indicated and other parameters as in (6.5).
Note the period-doubling route to chaos.

μi = 0.01, i = 1, 2; this can be thought of as a delay in the onset of immunity, followed by eventual loss
of immunity. Periodic recurrent outbreaks are observed for these parameters, see Figure 8.

Period-doubling and chaotic outbreaks can also occur in this model for larger n and non-monotone
βi. One example is given in Figure 8, using the following parameter values:

n = 100; βs = 1, βi =
{

1, 40 ≤ i ≤ 80

0, otherwise
; μi = 0.5. (6.5)

The non-monotonicity of βi in (6.5) is hard to justify biologically; it would be more realistic to assume
that βi is increasing with i. While it is easy to find sustained oscillations with such monotone βi, it is an
open question to find examples of chaotic behaviour with this monotone βi.The full analysis of system
(6.4) is also left for future work.

7. Discussion
In this paper, we studied several extensions of SIR model which can lead to recurrent/chaotic outbreaks.
We analysed how seasonal variations can destabilise an endemic equilibrium leading to outbreaks. We
then used asymptotic matching to reduce complex dynamics to a two-dimensional discrete map for
outbreak timing and strength.

Many open questions remain. We assumed slow immunity loss comparable with timescale of seasonal
change (ω = O(1) in notation of (1.2)). A different regime would be to assume an even slower immu-
nity loss; this would correspond to ω � 1. As seen in Figure 2, asymptotics start to fail in this regime
(i.e. fast but slight variations). It would be interesting to develop a theory that is able to capture this
regime.

Simulations in §6.1 illustrate that stochastic parameter variation leads to a similar destabilisation of
the endemic equilibrium. It is an open question to ‘quantify’ this phenomenon: how much stochasticity
is required to induce big outbreaks (as opposed to small variations around endemic equilibrium)?
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The model of public health in Section 6.2 leads to periodic outbreaks. However, we were not able to
produce chaotic outbreaks using a similar paradigm. More effort would be welcome in this direction.

In Section 6.3, we provided an example of a model with multiple classes that leads to period-doubling
and chaotic outbreaks. The example is hard to justify biologically due to non-uniformity in βi. Finding
a more realistic example of this is an open problem. Finally, it would be interesting to consider the
continuum limit of many-class model. This naturally leads to integro-differential system [13]. It would
be interesting to apply some of the ideas here to the resulting continuum limit to predict destabilisation
and outbreaks in this model.

Competing interests. None.
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