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Recently, the validity range of the approximations commonly used in neoclassical
calculation has been reconsidered. One of the primary motivations behind this trend is
observation of an impurity hole in LHD (Large Helical Device), i.e. the formation of
an extremely hollow density profile of an impurity ion species, such as carbon C6+, in
the plasma core region where a negative radial electric field (Er) is expected to exist.
Recent studies have shown that the variation of electrostatic potential on the flux
surface, Φ1, has significant impact on neoclassical impurity transport. Nevertheless,
the effect of Φ1 has been studied with radially local codes and the necessity of global
calculation has been suggested. Thus, we have extended a global neoclassical code,
FORTEC-3D, to simulate impurity transport in an impurity hole plasma including Φ1
globally. Independently of the Φ1 effect, an electron root of the ambipolar condition
for the impurity hole plasma has been found by global simulation. Hence, we have
considered two different cases, each with a positive (global) and a negative (local)
solution of the ambipolar condition, respectively. Our result provides another support
that Φ1 has non-negligible impact on impurity transport. However, for the ion-root
case, the radial C6+ flux is driven further inwardly by Φ1. For the electron-root case,
on the other hand, the radial particle C6+ flux is outwardly enhanced by Φ1. These
results indicate that how Φ1 affects the radial particle transport crucially depends on
the profile of the ambipolar-Er, which is found to be susceptible to Φ1 itself and the
global effects.

Key words: fusion plasma, plasma confinement, plasma simulation

1. Introduction

Fusion plasmas contain several ion species other than the fuel ions. Accumulation
of such so-called ‘impurity ions’ in the core region could prevent the achievement
of steady-state fusion operation by dilution of the fuel ions or energy loss through
radiation. Transport of impurity ions is caused by turbulent and neoclassical processes.
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Although it is thought that the turbulent contribution usually dominates over the
neoclassical contribution for bulk plasmas, the contribution of neoclassical transport
can also be significant for impurity transport (Burhenn et al. 2009). The neoclassical
flux of species a is given by

Γa ≡

〈∫
d3vvd · ∇rfa1

〉
, (1.1)

where vd denotes the guiding-centre drift velocity, r the radial coordinate, fa1 the non-
adiabatic part of the deviation from the local Maxwellian of the species a and 〈. . .〉 the
flux surface average, respectively. Γa can also be expressed by the linear combination
of thermodynamic forces:

Γa =−na

∑
b

[
Dab

11

(
n′b
nb
+

ZbeΦ ′

Tb

)
+Dab

12
T ′b
Tb

]
, (1.2)

where nb denotes the density, Tb the temperature and Zbe the charge of species b, res-
pectively, Φ denotes electrostatic potential and Dab

ij the neoclassical transport coeffi-
cients and the prime denotes the derivative with respect to the radial coordinate, r.

For impurity species, the term

− nzDzz
11

ZzeΦ ′

Tz
= nzDzz

11
ZzeEr

Tz
(1.3)

tends to dominate with increasing charge number Zz, where Er = −Φ
′ is the radial

electric field and the index z refers to the impurity species. This term drives the
impurity inwardly since the coefficient Dzz

11 is positive and the sign of Er is expected
to be negative in typical fusion-relevant plasmas. In axisymmetric systems, however,
the terms involving Er = −Φ

′ in (1.2) are cancelled when the sum over the species
is taken and the net contribution of Er to the flux vanishes. The coefficient Dzz

12 is
usually positive and it can be larger than the Dzb

11 terms in absolute value. Then, a
sufficiently steep temperature gradient can drive the impurity outwardly. This is called
the ‘temperature screening effect’. On the other hand, in non-axisymmetric systems,
the cancellation of Er terms does not usually occur because neoclassical transport is
not intrinsically ambipolar like it is in tokamaks. This is a serious disadvantage of
non-axisymmetric devices. Thus, to understand the nature of impurity transport and
establish a way to mitigate the impurity accumulation in the core region are crucial
tasks for maintaining stable plasma operation.

With this background, a notable phenomenon has been observed in LHD (Large
Helical Device). The phenomenon is called ‘impurity hole’, and it indicates the
formation of an extremely hollow density profile of an impurity species in the
plasma core region where a negative Er is expected to exist (Ida et al. 2009). The
phenomenon had been first observed for carbon C6+ and in a later study (Yoshinuma,
Ida & Yokoyama 2010) it was reported that the same hollow structure can also be
formed in the density profile of neon Ne10+. The study has also shown that the
density in the core becomes hollower for heavier impurities. These observations
contradict the prediction of the standard neoclassical transport theory that medium or
heavy impurities are expected to be driven inwardly by the negative Er. Gyro-kinetic
approaches have also been taken, but they indicate that the turbulent C6+ flux also
directs inwardly in ion-root plasmas with hollow density profiles. It is also shown
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that, in such plasmas, the total neoclassical flux can be too large to satisfy the
particle balances between turbulent and neoclassical contributions (Nunami et al.
2016, 2017, 2019, 2020). Thus, the validity range of the approximations commonly
used for neoclassical simulations has been reconsidered. For example, Helander
et al. (2017) have pointed out that describing collision processes only with the
pitch angle scattering operator, as conventionally done, is inadequate for studying
impurity transport and, by retaining the friction force part, they have shown the
cancellation of the Er terms and hence temperature screening is in fact possible even
in non-axisymmetric systems under certain conditions (see also Newton et al. 2017).
In order for the cancellation to take place in a helical plasma, the plasma needs
to be in a relevant mixed collisionality, where a highly collisional impurity species
exists in the low collisional background ion. In addition, the variation of electrostatic
potential over the flux surface, Φ1 ≡ Φ − Φ0, is required to be sufficiently small
(Buller et al. 2018; Calvo et al. 2018a); here Φ0 =Φ0(r) is the flux function part of
the electrostatic potential. In Velasco et al. (2019), an experimental case in which the
temperature screening may be occurring is discussed with numerical analysis.

Independently of those works, Φ1 itself has been thought to have a non-negligible
impact on impurity transport. Although Φ1 itself is usually smaller by one or two
orders of magnitude than the uniform part (Calvo et al. 2018b), the impact of Φ1 in
the guiding-centre motions relative to the impact of the magnetic field through the
magnetic drift or the mirror force becomes larger proportionally to the charge of the
species. Thus, while the effect of Φ1 is usually small for the main ion or electron, it
can be essential for highly charged impurities. While measuring such a small variation
in electrostatic potential is still challenging in LHD, it is already technically feasible
in the smaller device TJ-II and the potential variation has actually been detected
in such experiments (Pedrosa et al. 2015; García-Regaña et al. 2018; Estrada et al.
2019). Also, by several simulation studies, it has already been shown that Φ1 can
have substantial impact on neoclassical impurity transport (see e.g. García-Regaña
et al. 2013, 2017; Calvo et al. 2018a; Mollén et al. 2018; Velasco et al. 2018).
However, all of those calculations have been performed with radially local codes, i.e.
the models in which the radial drift in the guiding-centre motion is neglected and
dynamics on each flux is separated.

In most of the local models, the magnetic drift, vm, is entirely dropped from the
equation for the guiding-centre orbit in the configuration space. However, the validity
of this approximation for low-collisionality cases is ensured only when the E×B drift,
vE, is large enough compared with the magnetic drift. When Er is close to zero, the
helically trapped particles lose their mobility on the flux surface and the contribution
of the trapped particles to radial transport significantly increases. Consequently, radial
fluxes in the conventional local models show a strong peak around Er = 0. Such
an excessive transport can be largely moderated by the inclusion of the tangential
component of the magnetic drift. The tangential vm moves the trapped particles along
the flux surface and can detrap them without collision. Also, the peaking point is
shifted from where Er = 0 to where the particle average of vd · ∇α ≡ (vm + vE) · ∇α

vanishes on the flux surface, where the overbar denotes the orbit average and α labels
magnetic field lines. As the result, the difference in the radial particle or energy flux
of hydrogen ions between calculations with and without the tangential vm can be an
order of magnitude (Matsuoka et al. 2015; Huang et al. 2017; Velasco et al. 2020).
By evaluating Φ1 and its impact on impurity transport using a local model with the
tangential vm, Velasco et al. (2018) also found that the phase structure of Φ1 can
be substantially modified by the tangential vm. Further, in unoptimised devices such
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as LHD under the conditions being discussed, the radial component of vm can be
non-negligible as well (Calvo et al. 2017). In LHD cases, it has been shown that the
hydrogen fluxes obtained by calculation with the full vm can be a few times smaller
than those obtained by calculation only with the tangential vm (Matsuoka et al. 2015;
Huang et al. 2017). The effect of the radial vm appears in the structure of Φ1 as well
(Fujita et al. 2019). Thus, in order to investigate the structure of Φ1 and its impact on
transport in low-collisionality LHD plasmas, global effects should not be neglected.

Recently, we have made two major extensions of a global neoclassical simulation
code, FORTEC-3D. The first is to enable it to evaluate Φ1 (Fujita et al. 2019) and
include its effect in a drift-kinetic equation. The second is the implementation of
a cross ion-species collision operator to perform multi-ion-species calculation. The
collision operator retains both test-particle and field-particle parts and the effects of
the momentum and energy exchanges by friction are included (Sugama, Watanabe
& Nunami 2009; Satake et al. 2020). Thus, this newly extended code can be used
to investigate the effect of Φ1 on impurity transport including the global effects.
Verification of the numerical schemes in the multi-species version of FORTEC-3D
will appear in a separate paper. In this paper, this extended version of the code is
applied to impurity transport in LHD plasmas in which hollow carbon density profiles
are formed. This paper is organised as follows: the theoretical model used for this
study is introduced in § 2. The setup for the calculation is presented in § 3. The result
is shown and discussed in § 4. Finally, a conclusion is drawn in § 5.

2. Theoretical model and numerical method

In this section, the theoretical model used in FORTEC-3D is presented. FORTEC-
3D is a Monte Carlo δ f code which solves a drift-kinetic equation with full linearised
Landau collision operator without employing the radially local approximation (Satake,
Kanno & Sugama 2008; Satake et al. 2010).

2.1. Drift-kinetic equation
When the guiding-centre coordinates X, the parallel velocity v‖ and the magnetic
moment µ= mav

2
⊥
/(2B) are chosen as the phase-space variables, where B= |B| and

v⊥ is the perpendicular velocity, the guiding-centre equations of motion are given by

Ẋ= v‖b+
1

ZaeB∗‖
b× (mav

2
‖
b · ∇b+µ∇B+ Zae∇Φ), (2.1)

v̇‖ =−
1

mav‖
Ẋ · (µ∇B+ Zae∇Φ), (2.2)

µ̇= 0, (2.3)

where b= B/B, B∗ =∇ × A∗ is the corrected magnetic field with the guiding-centre
vector potential A∗ = A+ mav‖b/(Zae), B∗

‖
= B∗ · b and the overdot denotes the total

time derivative Ȧ≡ dA/dt of any function A. It is assumed that ∂A/∂t= ∂A∗/∂t= 0
in deriving the equations above.

Splitting the distribution function of species a as fa = fa0 + fa1, where fa1 � fa0,
FORTEC-3D solves the equation for fa1. The lowest-order distribution function fa0 is
given by

fa0 = faMe−ZaeΦ1/Ta, (2.4)
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with the local Maxwellian

faM = na0

(
ma

2πTa

)3/2

exp

[
−

mav
2
‖

2Ta
−
µB
Ta

]
. (2.5)

The first-order drift-kinetic equation for fa1 is then given by

∂fa1

∂t
+ Ẋ · ∇fa1 + v̇‖

∂fa1

∂v‖
−CTP( fa1)=CFP( fa0)+

Zae
Ta

∂Φ1

∂t

− Ẋ · ∇r

[
n′a0

na0
+

ZaeΦ ′0
Ta
+

(
mav

2
‖

2Ta
+
µB
Ta
−

3
2
+

ZaeΦ1

Ta

)
T ′a
Ta

]
fa0, (2.6)

where na0 and Ta are flux functions, ma denotes the mass of the species a and
CTP( fa1) and CFP( fa0) are the test-particle part and the field-particle part of the
linearised collision operator, respectively,

CTP( fa1)=
∑

b

Cab
TP( fa1, fb0), (2.7)

CFP( fa0)=
∑

b

Cab
FP( fa0, fb1). (2.8)

Strictly speaking, however, fa0 is approximated with faM in the linearised collision
operator for the present work. Also, the recent attempts to extend the collision
operator to include higher-order terms which can be important for impurity transport
(Sugama et al. 2019; Calvo et al. 2020) are not considered. The equations (2.1)–(2.6)
are reduced to the equations for a case without Φ1 by setting Φ1 = 0. A derivation
of the drift-kinetic equation (2.6) is provided in appendix A.

Note that in this model, the term corresponding to the so-called E× B drift

vE ≡
1
B∗‖

b×∇Φ (2.9)

is species-dependent due to the denominator

B∗
‖
= B+

mav‖

Zae
b · ∇× b (2.10)

and FORTEC-3D does solve (2.1)–(2.3) as written here so that the phase-space
volume is conserved (Littlejohn 1983). However, the second term in (2.10) is
negligible as far as the low-beta approximation

∇× b'
B×∇B

B2
(2.11)

holds. Then, vE can be approximated as

vE '
1
B

b×∇Φ (2.12)

and the value of the E×B drift becomes species-independent. Also, it does not affect
the basic property that the lowest-order distribution function does not generate radial
particle flux:

Γa0 ≡

〈∫
d3v(vm + vE) · ∇rfa0

〉
= 0. (2.13)

The verification of (2.13) is provided in appendix A.
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2.2. Expressions in the Boozer coordinate system
The Boozer coordinate system (Boozer 1981) is used in FORTEC-3D. In this
coordinate system, the covariant representation of the magnetic field is given by

B=∇ψ ×∇θ + ι(r)∇ζ ×∇ψ = I(r)∇θ +G(r)∇ζ + β∗∇ψ, (2.14)

where ι is the rotational transform, ψ is the toroidal magnetic flux divided by 2π,
I is related to the toroidal current inside the flux surface at r and G is related to the
poloidal current outside the surface, respectively. Since β∗ is related to the Pfirsch–
Schlüter current (Boozer 1981) and can be estimated as O(β/a), where β and a are
the plasma beta and the minor radius, respectively, we assume low-β plasmas and
therefore the term β∗∇ψ in (2.14) is ignored in this work. This approximation allows
us to put the guiding-centre equations of motion in canonical form. Although we
will not write down the equations in canonical form explicitly here, this property has
an advantage of ensuring the properties of Hamiltonian systems such as Liouville’s
theorem. See § 3.2 of White (2014) and references therein for a detailed discussion
of the construction of the Hamiltonian formulation of the guiding-centre motion. The
contravariant representation is given by

B=
1
√

g
dψ
dr
(ιeθ + eζ ), (2.15)

where ej is the unit vector in the j-direction and the Jacobian
√

g is given by

√
g=

dψ
dr

G+ ιI
B2
=
(ψ ′G+ χ ′I)

B2
, (2.16)

with χ the poloidal magnetic flux divided by 2π.
In this coordinate system, the guiding-centre equations of motion are expressed as

follows (a derivation is provided in § A.2):

dr
dt
=
δ

γ

(
I
∂B
∂ζ
−G

∂B
∂θ

)
+

Zae
γ

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)
, (2.17)

dθ
dt
=

G
γ
(δB′ + ZaeΦ ′)+

v‖B
γ

(
Zaeχ ′ −

mav‖

B
G′
)
, (2.18)

dζ
dt
=−

I
γ
(δB′ + ZaeΦ ′)+

v‖B
γ

(
Zaeψ ′ +

mav‖

B
I′
)
, (2.19)

dv‖
dt
= −

v‖

Bγ

[
Zae
(

I
∂B
∂ζ
−G

∂B
∂θ

)
Φ ′ −µ

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)
B′
]

+
ZaeB
maγ

[(
mav‖

ZaeB
G′ − χ ′

)(
µ
∂B
∂θ
+ Zae

∂Φ

∂θ

)
−

(
mav‖

ZaeB
I′ +ψ ′

)(
µ
∂B
∂ζ
+ Zae

∂Φ

∂ζ

)]
, (2.20)

where

δ ≡µ+
mav

2
‖

B
(2.21)
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and
γ ≡ ZaeBB∗

‖

√
g (2.22)

are defined. δ here is not to be confused with the delta function or some ordering
parameter. The flux surface average of an arbitrary function A is expressed as

〈A〉 =
1
V ′

∮
√

g dθ dζA, (2.23)

where

V ′ =
∮
√

g dθ dζ . (2.24)

The radial particle flux is thus calculated by

Γa =
1
V ′

∮
√

g dθ dζ
∫

d3vṙfa1. (2.25)

2.3. Two-weight δ f method
The two-weight δ f scheme (Brunner, Valeo & Krommes 1999; Wang et al. 1999) is
employed in FORTEC-3D. The microscopic dynamics is simulated by marker particles
which evolve according to the equations of motion (2.1)–(2.3). In the two-weight δ f
method, the distribution function is split into two parts as f = f0 + f1, where f0 is an
analytically known part and f1 is the deviation from that. In this study, the adiabatic
response to Φ1 is included in the f0 part (2.4). See García-Regaña et al. (2017) for
a discussion of different choices of f0. The species index is omitted for simplicity in
this subsection.

The distribution functions are represented by the products of the marker particle
distribution g(Z, t) and the weight fields W(Z, t) and P(Z, t), respectively, as

f0(Z, t)= P(Z, t)g(Z, t), (2.26)
f1(Z, t)=W(Z, t)g(Z, t). (2.27)

Each marker particle is assigned two weights wi and pi, which are defined as the
values of the weight fields W and P at the phase position Zi, respectively:

wi(t)=W(Zi(t), t), (2.28)
pi(t)= P(Zi(t), t), (2.29)

where i is the particle label. The weights also evolve in time following the equations

ṗi =
pi

f0
Ż ·

∂

∂Z
f0 −

Ze
T
∂Φ1

∂t
pi, (2.30)

ẇi =−
pi

f0

(
Ż ·

∂

∂Z
−CFP

)
f0 +

Ze
T
∂Φ1

∂t
pi, (2.31)

which are evaluated at Z = Zi(t). We thus can solve the drift-kinetic equation for f1

by integrating the evolution equations (2.1)–(2.3), (2.30) and (2.31).
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2.4. Evaluation of electrostatic potential
The electrostatic potential can be decomposed as Φ =Φ0+Φ1. The first part is a flux
function Φ0=Φ0(r) and generates a radial electric field Er =−Φ

′

0. The radial electric
field Er is determined so that it satisfies the ambipolar condition∑

a

ZaΓa = 0. (2.32)

In FORTEC-3D, Er =−Φ
′

0 can be given as a fixed input parameter or it also can be
internally solved by the equation (2a) in Satake et al. (2008).

The second part Φ1 = Φ1(r, θ, ζ ) is the non-flux function part. It is assumed that
〈Φ1〉 = 0 in the present study. See appendix B for the justification of this assumption.
The non-uniform part Φ1 is determined by the following argument. From (2.4), the
density of species a takes the form

na = na0 exp (−ZaeΦ1/Ta)+ na1 (2.33)

and imposing quasi-neutrality up to the first order yields the expression

Φ1 =
1
e

(∑
I

Z2
I

nI0

TI
+

ne0

Te

)−1 ∑
I

ZInI1

=
1
e

(∑
I

Z2
I

nI0

TI
+

ne0

Te

)−1 ∑
I

ZI

∫
d3vfI1, (2.34)

where the subscript I refers to the ion species. In deriving the above expression,
ZaeΦ1/Ta � 1 is assumed for all species. As we shall see below, this assumption
is reasonable for the present study. However, the assumption does not hold for
high-Z impurities. Also, the adiabatic response of electrons is assumed, i.e. ne1 = 0.
The spatial structure of Φ1 is thus determined by the superposition of the ion density
variations nI1, weighted by the charge number ZI . Note here that in some studies, Φ1 is
evaluated by considering only the contribution of the main ion. When the contribution
of impurities is taken into account as (2.34), the value of Φ1 usually becomes
smaller since the impurity contributions are included in the factor

∑
I Z2

I nI0/TI in the
denominator. In this study, Φ1 is evaluated during the self-consistent calculation of
the set of equations (2.1)–(2.3), (2.6) and (2.34). It has been pointed out that the
contribution of kinetic electrons to Φ1 can be significant, especially in electron-root
plasmas (García-Regaña et al. 2018). However, it is numerically too costly for the
present version of FORTEC-3D to solve kinetic electrons with ion species together.

2.5. Evaluation of the flux driven by Φ1

In the Boozer coordinate system, the radial particle flux driven by Φ1 through the
E× B drift, vE1, is expressed as

ΓvE1(r) =
1

V ′(r)

∮
√

g(X) dθ dζ
∫

d3v
1

B(X)B∗‖(X, v)
√

g(X)

×

(
I(r)

∂Φ(X)
∂ζ

−G(r)
∂Φ(X)
∂θ

)
fa1(X, v), (2.35)
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where X = (r, θ, ζ ) and v = (v‖, µ). This quantity can be evaluated in two different
ways. One is to simply perform the integral and the other is to use Fourier series
expansion. If the low-beta approximation

1
B(X)B∗‖(X, v)

'
1

B2(X)
(2.36)

is used, the velocity integral can readily be performed and we obtain

ΓvE1(r)=
1

V ′(r)

∮
dθ dζ v̄E1(X)na1(X), (2.37)

where we have defined

v̄E1 ≡
1
B2

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)
'
√

gvE1 · ∇r. (2.38)

Thus, if we expand v̄E1 and na1 in Fourier series, respectively, and put them into (2.37),
only the products of the same modes survive and the equation is formally reduced to
the following form:

ΓvE1(r)=
1

V ′(r)

∑
m,n

Cm,n

[
ṽ

m,n(c)
E1 (r)ñm,n(c)

a1 (r)+ ṽm,n(s)
E1 (r)ñm,n(s)

a1 (r)
]
, (2.39)

where Cm,n are normalisation coefficients and ṽm,n(c)
E1 , ṽm,n(s)

E1 , ñm,n(c)
a1 and ñm,n(s)

a1 are the
Fourier coefficients of cosine- and sine-(m, n) modes of v̄E1 and na1, respectively. In
the present article, Fourier coefficients of a quantity A(X) are defined as follows:

Ãm,n(c)(r)=
1

2π2

∫∫
dθ dζA(X) cos (mθ − nNζ ),

Ãm,n(s)(r)=
1

2π2

∫∫
dθ dζA(X) sin (mθ − nNζ ),

 (2.40)

where N is the toroidal period number (N = 10 for LHD). Note that the flux driven
by the magnetic drift, vm, cannot be put in the form of (2.37) and therefore also not
in the form of (2.39) since vm essentially depends on the velocity variables (and the
dependence cannot be approximated away).

Although the first method is more simple and straightforward for evaluating ΓvE1 ,
this second method has an advantage that it enables us to see how each mode
contributes to the additional flux. The C6+ flux will be evaluated by these two
different methods below.

3. Setup for the ion transport calculation
We consider an LHD hydrogen plasma which contains two different impurity

species, helium He2+ and carbon C6+. Electrons are assumed to be adiabatic in
solving the transport of ion species and in the quasineutrality condition. The standard
LHD configuration with a major radius R0 = 3.7 m and a minor radius a = 0.62 m
is considered. The magnetic field strength and its Fourier spectrum are represented
in figure 1. The density and temperature profiles are shown in figures 2 and 3. One
of the features which characterises an impurity hole plasma is the steepness of its
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(a) (b)

(c) (d)

FIGURE 1. The magnetic field strength on the flux surface at r/a=0.2 (a), 0.5 (b) and 0.8
(c) and the major Fourier components of the magnetic field (d). The value of the cosine-
(0, 0) component in (d) is adjusted by subtracting 2.5 for visualisation purpose. θ and ζ
are poloidal and toroidal angle coordinates in the Boozer coordinate system, respectively,
and N = 10.

ion temperature gradient. This profile has been used for several impurity hole studies
(Nunami et al. 2016, 2017, 2019, 2020; Mollén et al. 2018). In this profile, impurity
ions comprise a relatively large portion of the total ion density. The effective charge
Zeff=

∑
I nIZ2

I /ne varies from 1.85 to 2.14 along the minor radius and its average value
over the minor radius is 2.02. Although the trace approximation of the impurities
is thus not appropriate, impurity contributions are treated as trace quantities in
the evaluation of the ambipolar radial electric field in this study for the reason of
computational cost. Since the ambipolar radial electric field is determined by the
condition (2.32), the approximation can still be justified if the impurity contribution
to the total ion particle flux turns out to be small enough compared with the main
ion contribution. However, when the net impurity contribution is comparable with
the main ion contribution, the ambipolar-Er is to be modified from the ones obtained
by the pure H calculations. Although the detail of how the presence of impurities
affects the ambipolar condition depends on the case, positive impurity fluxes usually
enhance the ambipolar-Er in the negative direction.

In figure 4, the normalised collisionality, ν∗a , of each ion species is plotted. Here
the quantity is defined by

ν∗a ≡
∑

b

Rνab/ε
3/2

ιvTa
, (3.1)
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FIGURE 2. Radial profiles of densities.

FIGURE 3. Radial profiles of temperatures. All the ion species are assumed to be in
thermal equilibrium with each other.

FIGURE 4. The normalised collisionality, ν∗a , of H1+ (red), He2+ (green), C6+ (blue) and
the lower bound of the Pfirsch–Schlülter regime (magenta).

with the collision frequency between species a and b

νab =
Z2

aZ2
be4nb lnΛ

3π3/2ε2
0m2

av
3
Ta

, (3.2)

where ε = r/R is the inverse aspect ratio, vTa =
√

2Ta/ma is the thermal velocity
of species a, ln Λ is the Coulomb logarithm and ε0 is the vacuum permittivity,
respectively. The sum in (3.1) is taken over all the ion species including the
species a itself. In the figure, the magenta line represents the lower bound of the
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FIGURE 5. Radial profiles of the ambipolar radial electric fields for the ion-root case
obtained by a DKES/PENTA local calculation (solid blue line) and the electron-root case
obtained by a FORTEC-3D global calculation (red line), respectively. An electron-root
found by the local calculation is also plotted (dashed blue line).

Pfirsch–Schlülter regime. The banana regime in the axisymmetric limit corresponds
to

ν∗a < 1 (3.3)

and the intermediate region between ν∗a =1 and the magenta line to the plateau regime.
In the present case, H1+ and He2+ are in the 1/ν or

√
ν ∼ ν regime. C6+ is not so

highly collisional to be in the Pfirsch–Schlülter regime and belongs in the plateau
regime.

3.1. Ambipolar radial electric field
The ambipolar condition has been determined by two different (sets of) numerical
codes. One is a set of local codes DKES/PENTA and the other is the global
code FORTEC-3D. Both FORTEC-3D and DKES/PENTA determined the ambipolar
condition by assuming a pure H plasma. Both solutions are represented in figure 5.
The red line corresponds to the global solution and the solid blue line to the local
solution. As can be seen, those solutions are completely different. The sign of
the global solution is positive. In other words, the global calculation indicates that
the plasma is in electron-root, not in ion-root. It is not necessarily surprising that
the global calculation yields different solutions from local ones. As mentioned
in the introduction, it is known that the magnetic drift (even only the tangential
component of it) can significantly change the dependence of neoclassical transport on
Er (Matsuoka et al. 2015; Huang et al. 2017; Velasco et al. 2020). In Velasco et al.
(2017), the ambipolar conditions for such impurity hole plasmas are investigated
based on the collisionality and it is argued that, even if an impurity hole plasma
is in ion-root, the plasma profiles are very close to the condition for Er to become
positive. In fact, as represented by the dashed line in figure 5, a positive solution
is found by the local codes as well. The solution is stable and physically possible.
Its existence suggests that the gap between the local and global solutions is not as
large as it appears. Yet, we adopt the ion-root (represented by the solid blue line)
as our ‘local solution’ since similar solutions are used in previous local studies. We
thus investigate the difference of Φ1 structure and its impact on impurity transport
between the cases, each with the local and the global solutions, respectively.
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However, whether the sign of the ambipolar-Er is positive or negative is the most
crucial issue in the impurity hole study. If the sign of ambipolar-Er turns out to
be positive in real impurity hole plasmas, the scenario is completely changed and
the impurity hole phenomenon could be explained by standard neoclassical theory
arguments. Nunami et al. (2019, 2020) have intensively investigated the condition for
both solutions by considering the contributions of turbulence and external torque. The
result of the study also seems to support the possibility of the positive solution.

There is measurement data on the ambipolar-Er profile in an impurity hole plasma
and it indicates that the sign of the ambipolar-Er near the magnetic axis is indeed
negative (Ido et al. 2010). However, it also shows that the sign of Er transits to
positive at some outer radius. Impurity hole has been observed in plasmas with
several different n–T profiles (Nakamura et al. 2017), but the measurement data on
ambipolar-Er has been reported only for the case mentioned above. The n–T profile
used in this study is close to but not the same as that in the measured case. Thus,
our global solution for the ambipolar condition does not necessarily contradict the
existing experimental data.

Since the following concerns remain, however, we cannot simply accept the
electron-root as the correct solution yet. First, the positive solution is, as mentioned
above, obtained by a single ion-species calculation and the contribution of impurities
to the ambipolar condition is not considered. Second, the Φ1 effect is not included
in the ambipolar condition as well. In contrast, negative solutions similar to our
local solution have been obtained by self-consistent calculations for multi-ion-species
plasmas including Φ1 (Mollén et al. 2018). How Φ1 affects the radial particle fluxes
in our electron-root case will be examined below.

In any case, the primary purpose of this study is not to examine the ambipolar
condition, but to apply the newly extended code to impurity transport in a real
helical configuration. Thus, we hold both possibilities here and investigate two cases
corresponding to each solution, respectively. Both cases have the same background
parameters (such as the magnetic field configuration, densities and temperatures)
except for the radial electric field.

4. Simulation results
In this section, calculation results of the cases with and without Φ1 for each ion-root

case and electron-root case are shown and compared to see the impact of Φ1 on the
radial particle transport. The result of the ion-root case, which is mainly focused on,
is shown first and the result of the electron-root case follows.

4.1. Ion-root case
In figure 6, the radial profiles of particle fluxes are compared between the cases with
and without Φ1. The red lines represent the fluxes for the case without Φ1 and the
green lines for the case with Φ1. Before discussing the impact of Φ1, it is worth
commenting on the result without Φ1. The H1+ flux obtained by our global calculation
is smaller by one order than that obtained by local calculations for similar plasmas
(Mollén et al. 2018). On the other hand, the values of the He2+ and C6+ fluxes in
our global result are of the same order as those in the local study. In this ion-root
case, the plasma profile belongs in a parameter region where the discrepancy in the
H1+ fluxes between global and local (neglecting the entire vm) calculations becomes
the largest (Matsuoka et al. 2015; Huang et al. 2017). This significant difference in
the main ion flux directly affects the ambipolar condition. Thus, it is natural that the
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(a) (b) (c)

FIGURE 6. Radial particle fluxes of H1+ (a), He2+ (b) and C6+ (c) for the ion-root case
without (red) and with (green) Φ1, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 7. From left, structures of Φ1, nH.1, nHe,1 and nC,1 on the flux surface at r/a= 0.2
for the ion-root case. Figures (a–d) represent the results without Φ1 and (e–h) the results
with Φ1. Note that the scale of the colour contour is different for each figure. θ and ζ
are poloidal and toroidal angle coordinates in the Boozer coordinate system, respectively,
and N = 10.

solutions of the ambipolar condition turn out to be qualitatively different between the
global and the local simulations and an ion-root is not found by the global simulation.

Now, let us examine the Φ1 effect on the particle fluxes. In Mollén et al. (2018), it
is shown that the C6+ flux in ion-root plasmas is inwardly enhanced by Φ1 while the
H1+ and the He2+ fluxes are outwardly driven. A similar result has also been obtained
for the C6+ flux in Velasco et al. (2018). Figure 6 shows that our global result for
the C6+ flux is qualitatively analogous to those local results. That is, the C6+ flux is
driven further inwardly, not outwardly. This means that Φ1 contributes to the impurity
accumulation, rather than mitigate it. On the other hand, positive enhancement is seen
in the H1+ and He2+ fluxes, especially at outer radii r/a> 0.8.

Let us look into the structures of Φ1 and density variation of each ion species to
see which results in the modification of the particle fluxes in figure 6. In figure 7,
the phase structures of the normalised Φ1 and the density variation of each ion
species on the flux surface at r/a= 0.2 are shown. Figure 7(a–d) represent the results
without Φ1 and figure 7(e–h) the result with Φ1. Here ‘Φ1 for the case without Φ1’
means Φ1 constructed from the solutions of the drift-kinetic equation neglecting Φ1

through (2.34). When the difference in Φ1 between the cases with and without Φ1

in this sense becomes significant, the necessity of the self-consistent calculation is
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(a) (b) (d)

(e) (f)

(c)

(g) (h)

FIGURE 8. From left, structures of Φ1, nH.1, nHe,1 and nC,1 on the flux surface at r/a= 0.5
for the ion-root case. Figures (a–d) represent the results without Φ1 and (e–h) the results
with Φ1. Note that the scale of the colour contour is different for each figure. θ and ζ
are poloidal and toroidal angle coordinates in the Boozer coordinate system, respectively,
and N = 10.

(a) (b) (d)

(e) (f)

(c)

(g) (h)

FIGURE 9. From left, structures of Φ1, nH.1, nHe,1 and nC,1 on the flux surface at r/a= 0.8
for the ion-root case. Figures (a–d) represent the results without Φ1 and (e–h) the results
with Φ1. Note that the scale of the colour contour is different for each figure. θ and ζ
are poloidal and toroidal angle coordinates in the Boozer coordinate system, respectively,
and N = 10.

indicated. Figures 8 and 9 make the same comparison at r/a = 0.5 and r/a = 0.8,
respectively. The amplitude of Φ1 is smaller than earlier local results overall and the
factor ZaeΦ1/Ta is at most the order of 10−1 even for C6+ in this case (for example,
eΦ1/Ti = 1.0× 10−2 at r/a= 0.5 roughly amounts to 30 V of Φ1 in this case). The
comparison of the density structures above implies that Φ1 is too small to strongly
modify the spectrum compositions of the ion species over the flux surface.

This can also be seen in figure 10, which represents the Fourier spectra of density
variations of the ion species for the cases with and without Φ1. The density variations
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(a) (b) (c)

(d) (e) (f)

FIGURE 10. Fourier spectra of nH,1 (a,d), nHe,1 (b,e) and nC,1 (c, f ) for the ion-root case.
Figures (a–c) represent the results without Φ1 and (d–f ) the results with Φ1.

(a) (b)

FIGURE 11. Fourier spectra of v̄E1 (a) and Φ1 (b) for the ion-root case.

are expanded in real trigonometric series. Only leading modes are plotted and reddish
colours are assigned to cosine modes and bluish colours to sine modes. Although the
Fourier spectra are evaluated on 50 flux surfaces in FORTEC-3D, only the values at
r/a= 0.0, 0.2, . . . , 1.0 are plotted for visualisation purpose. The mode compositions
are not largely affected by the inclusion of Φ1. One point worth noting is that the
phase structure of C6+ is qualitatively different from those of the other two species.
H1+ or He2+ mainly consists of stellarator symmetric components, which are preserved
under the transformation (θ, ζ ) → (−θ, −ζ ), as expected for the ions in the

√
ν

regime (Calvo et al. 2018b). On the other hand, the main components in the density
spectrum of C6+, which is in the plateau regime, change their signs under the same
transformation.

The spectrum of v̄E1 is plotted in figure 11 as well as the spectrum of Φ1 itself. For
H1+ and He2+, following (2.39), most of the cosine modes in their density spectra
couple with the same modes in the v̄E1 spectrum having the same signs. These
effective couplings result in the outward enhancement of the He2+ flux and H1+ flux
at r/a> 0.8. On the other hand, the sine-(1, 0) mode dominates in the C6+ spectrum.
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(a) (b)

FIGURE 12. (a) The total radial C6+ flux, ΓC, for the case with Φ1 (red), the vE1-driven
part of ΓC calculated by the integral (green) and the vE1-driven part calculated by the
products of the Fourier coefficients (blue). (b) The total radial C6+ flux, ΓC, for the case
with Φ1 (red), the total C6+ flux (driven only by vm) for the case without Φ1 (green) and
the vm-driven part for the case with Φ1 (blue).

(a) (b) (c)

FIGURE 13. Radial particle fluxes of H1+ (a), He2+ (b) and C6+ (c) for the
electron-root case without (red) and with (green) Φ1, respectively.

The value of this mode peaks around r/a= 0.6 and the mode couples with v̄E1 having
the opposite sign and results in the inward enhancement of the particle flux.

In figure 12(a), the radial C6+ flux driven by vE1 is plotted as well as the total C6+

flux for the case with Φ1. The red line represents the total C6+ flux calculated by the
integral (1.1). The green line represents the vE1-driven part of the C6+ flux calculated
by the integral (2.35). The blue line is also the vE1-driven part of the C6+ flux, but
it is obtained by the sum of the Fourier coefficient products in the form of (2.39).
The impact of Φ1 on the vm-driven flux is also shown in figure 12(b). The green line
represents the C6+ flux driven by the magnetic drift for the case without Φ1, i.e. the
total C6+ for the case without Φ1. The blue line represents the C6+ flux driven by vm
for the case with Φ1. It can been seen that the vm-driven flux is also enhanced by
the inclusion of Φ1. This is because, as shown in figure 10, Φ1 amplifies the sine-
(1, 0) mode in the C6+ spectrum and hence strengthens the opposite-sign couplings
between the magnetic drift and the C6+ distribution function as well. Here the sine-
(1, 0) component of vm represents the grad-B drift by the toroidicity of the magnetic
field. Therefore, at least in this case, the presence of Φ1 is unfavourable for impurity
accumulation avoidance.

4.2. Electron-root case
In figure 13, the radial particle fluxes with and without Φ1 for the electron-root
case are compared. Regardless of the species, the radial particle flux is outwardly
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(a) (b) (d)

(e) (f)

(c)

(g) (h)

FIGURE 14. From left, structures of Φ1, nH,1, nHe,1 and nC,1 on the flux surface at
r/a = 0.2 for the electron-root case. Figures (a–d) represent the results without Φ1 and
(e–h) the results with Φ1. Note that the scale of the colour contour is different for each
figure. θ and ζ are poloidal and toroidal angle coordinates in the Boozer coordinate
system, respectively, and N = 10.

(a) (b) (d)

(e) (f)

(c)

(g) (h)

FIGURE 15. From left, structures of Φ1, nH,1, nHe,1 and nC,1 on the flux surface at r/a=
0.8 for the electron-root case. Figures (a–d) represent the results without Φ1 and (e–h) the
results with Φ1. Note that the scale of the colour contour is different for each figure. θ and
ζ are poloidal and toroidal angle coordinates in the Boozer coordinate system, respectively,
and N = 10.

enhanced by Φ1. The enhancement is largest for C6+ and the existence of an outward
convection is indicated. However, the enhancements of the H1+ and He2+ fluxes
are not negligible as well. This result implies that the impact of Φ1 is too large to
be ignored in the calculation of the ambipolar condition. Thus, it is expected that
an electron-root slightly different from that used in this work would be found by
calculation including Φ1.

The reason for the strong outward enhancement can be seen in the phase structures
of density variations. The spatial structures of Φ1 and nI1 at r/a= 0.2 and r/a= 0.8
for this case are illustrated in figures 14 and 15, respectively. The amplitude of nI1
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(a) (b) (c)

(d) (e) (f)

FIGURE 16. Fourier spectra of nH,1 (a,d), nHe,1 (b,e) and nC,1 (c, f ) for the electron-
root case. Figures (a–c) represent the results without Φ1 and (d–f ) the results with Φ1.

(a) (b)

FIGURE 17. Fourier spectra of v̄E1 (a) and Φ1 (b) for the electron-root case with Φ1.

and hence of Φ1 are at the same level as those in the ion-root case. Also, the phase
structures of Φ1, H1+ and He2+ seemingly look similar between the ion-root and
the electron-root cases. However, the C6+ density structure is distinctively different
between the two cases. By comparing figures 9(d,h) and 15(d,h), it can be seen that
the C6+ density phase is inverted in the θ -direction.

This can also be seen in terms of Fourier spectra of the density variations and v̄E

shown in figures 16 and 17, respectively. As shown in figure 16, the signs of the sine-
(1, 0) modes in the density spectra are inverted from those in the ion-root case. This
is true not only for C6+, but also for H1+ and He2+. Further, this mode is amplified
by the inclusion of Φ1. Figure 17 shows that the sine-(1, 0) mode in the v̂E spectrum,
which comes from the cosine-(1, 0) mode in the Φ1 spectrum, is negative and is a
major component for this case as well. Thus, the inversion of the sine-(1, 0) modes in
the density spectra leads to strong same-sign couplings and contributes to the outward
radial particle fluxes. This sign inversion is not a consequence of the inclusion of Φ1

but, rather, it seems to be a consequence of the presence of the positive radial electric
field.
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(a) (b)

FIGURE 18. (a) The total radial C6+ flux, ΓC, for the case with Φ1 (red), the vE1-driven
part of ΓC calculated by the integral (green) and the vE1-driven part calculated by the
products of the Fourier coefficients (blue). (b) The total radial C6+ flux, ΓC, for the case
with Φ1 (red), the total C6+ flux (driven only by vm) for the case without Φ1 (green) and
the vm-driven part for the case with Φ1 (blue).

In figure 18, the contributions of the vE1-driven part (a) and the vm-driven part
(b) to the total radial C6+ flux are separately represented. The red lines in the
figures represent the total C6+ flux for the case with Φ1. The green and blue lines
in figure 18(a) represent the vE1-driven part of the C6+ flux, each calculated by the
integral and the sum of Fourier coefficients, respectively. In figure 18(b), the green
line represents the total C6+ flux for the case without Φ1, which is driven only by vm.
The blue line is the vm-driven flux for the case with Φ1. As for the ion-root case, the
vm-driven flux is reinforced by Φ1 as well. The primary cause of this enhancement is
the amplification of the sine-(1, 0) mode in the C6+ spectrum by Φ1 (see figure 16c, f ).
As the result, the vm-driven part becomes at most an order of magnitude larger than
the vE1-driven part.

4.3. Discussion of the result
For the ion-root case, a result analogous to previous local results has been obtained:
the C6+ flux is driven further inwardly, not outwardly by Φ1. This enhancement is
mainly caused by the couplings of the sine-(1, 0) modes between the C6+ density
spectrum and the radial drift velocities. Φ1 amplifies this mode and the opposite-sign
couplings of the sine-(1, 0) modes result in the further inward flux. For the electron-
root case, on the other hand, the radial particle flux is outwardly enhanced regardless
of the species mainly due to the same-sign couplings of the sine-(1, 0) modes.

The phase structure of Φ1 is mainly determined by the spatial distribution of
main ions. The main components in the Φ1 spectrum are then determined by the
magnetic field configuration. The spectra of H1+ or light impurities such as He2+

in low-collisionality regimes mainly consist of stellarator symmetric components.
Thus, stellarator anti-symmetric modes become dominant in the spectrum of v̄E1. On
the other hand, stellarator anti-symmetric components were found to be dominant
in the C6+ density spectrum, and these components tend to couple well with both
the magnetic drift and the E × B drift. The important question here is ‘with which
sign do the leading modes, in particular the sine (1, 0)-modes, of the impurity ions
couple with the radial drift velocities?’. An induction from our results implies that
the sign of Er is a key factor to determine the signs of the sine-(1, 0) modes and,
for ion-root plasmas, opposite-sign couplings are realised. To avoid those effective

https://doi.org/10.1017/S0022377820000598 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000598


Potential variation and global effects on impurity transport 21

negative couplings or turn them into positive ones, either the phase structure of Φ1
or the impurity density has to be strongly modified. However, we found that Φ1 only
increases the absolute value of the sine-(1, 0) mode in the C6+ density spectrum and
does not seem to affect its sign. Increasing the amplitude of Φ1 is unlikely to make
a qualitative difference either. Thus, our conclusion is that it is difficult for Φ1 to
mitigate the inward neoclassical C6+ flux, let alone drive it in the outward direction
in ion-root plasmas unless a strong particle or torque source exists.

The argument above ignores the contribution of kinetic electrons and it is possible
that their contribution modifies the Φ1 structure (García-Regaña et al. 2018). Although
it is worth examining, however, it is doubtful that the impact of kinetic electrons
can be strong enough to reverse the conclusion. On the other hand, our result does
not simply support the electron-root scenario either. In the present study, we have
demonstrated that Φ1 is indeed a necessary factor to study the role of neoclassical
transport in the formation of impurity hole, even in a global simulation model.
Although it is an important finding that the global simulation alters the ambipolar-Er

profile from the prediction by local codes, more detailed and accurate calculation, in
which the ambipolar-Er profile is determined without neglecting the effect of Φ1 on
the radial transport, remains for future research.

5. Conclusion

We have extended and enabled a global neoclassical code FORTEC-3D to simulate
impurity transport including the effect of Φ1. One of the motivations for this extension
is to investigate the impurity hole phenomenon. In this study, we found that the
impact of Φ1 on the radial impurity transport in unoptimised devices such as LHD
is mainly determined by the couplings of the sine-(1, 0) modes between the radial
components of the drift velocities and the impurity distribution. Further, the direction
of the enhancement of radial particle fluxes by Φ1 depends on the ambipolar-Er

profile. As the result, while our global result provides another support that Φ1 has
non-negligible impact on impurity transport, it was shown that Φ1 does not drive
impurities outwardly in the ion-root plasma. Instead, a possibility that the ambipolar
radial electric field in the impurity hole plasma is positive has emerged.

In this study, it has been assumed that the global effects are crucial, since the
plasma profile for our ion-root case belongs in the parameter region where the global
effects become most remarkable. However, we cannot distinguish between the
contributions of the radial component and the tangential component of vm only in the
present global result. Therefore, although we can at least conclude that considering
the effects of vm in the guiding-centre orbit is essential for studying transport in
impurity hole plasmas, we cannot tell to what extent the global effects are necessary.
Comparison of calculation results between the global model and the local model with
the tangential component of the magnetic drift will be made in a separate study.

We also found that there are some points to be improved in our calculation method.
In particular, simultaneous calculation of global neoclassical transport and ambipolar
radial electric field in multi-ion-species plasmas including Φ1 is needed. The impact of
kinetic electrons may be non-negligible as well. Performing the computation including
the effects mentioned above with reasonable numerical resource remains as a future
work. On the other hand, the existing experimental data on the ambipolar radial
electric fields in impurity hole plasmas are not sufficient as well. Thus, more efforts to
accumulate reliable data in both numerical simulation and experimental measurements
are needed to reveal the mechanism behind the impurity hole phenomenon.
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Appendix A. Equations solved by FORTEC-3D
A.1. Derivation of the 5D drift-kinetic equation

The model used in FORTEC-3D is based on Littlejohn’s guiding-centre Lagrangian
(Littlejohn 1983)

L=
1
ε
(ZaeA+ εmav‖b) · Ẋ+ ε

ma

Zae
µξ̇ −H, (A 1)

where the small parameter ε is temporarily introduced and the guiding-centre
coordinates X, the parallel velocity v‖, the magnetic moment µ and the gyrophase ξ
are chosen as the independent variables. The Hamiltonian H is given by

H = 1
2 mav

2
‖
+µB+ ZaeΦ (A 2)

and the Jacobian for the guiding-centre velocity variables is

D≡
B∗
‖

ma
=

1
ma

(
B+ ε

mav‖

Zae
b · ∇× b

)
. (A 3)

For a case with ∂A/∂t = ∂A∗/∂t = 0, the Lagrangian (A 1) gives the equations of
motion

dX
dt
=

B∗

B∗‖
v‖ +

ε

ZaeB∗‖
b× (µ∇B+ Zae∇Φ), (A 4)

dv‖
dt
=−

Ẋ
mav‖

· (µ∇B+ Zae∇Φ), (A 5)

dµ
dt
= 0 (A 6)

and (A 4) is equivalent to another expression

v‖b+
ε

ZaeB∗‖
b× (mav

2
‖
b · ∇b+µ∇B+ Zae∇Φ), (A 7)

to the order of O(ε2), which makes it easier to see the correspondence of each term
between different trajectory models (see e.g. Landreman et al. 2014; Huang et al.
2017). The parameter ε is omitted in the rest of this paper.
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The drift-kinetic equation with the phase-space variables Z = (X, v‖, µ) can be
written as

∂fa1

∂t
+ Ẋ · ∇fa1 + v̇‖

∂fa1

∂v‖
−C( fa1)=−Ẋ · ∇fa0 − v̇‖

∂fa0

∂v‖
, (A 8)

where C( fa1) is the linearised collision operator. Substituting (A 5) into the last term
on the right-hand side,

− v̇‖
∂fa0

∂v‖
= v̇‖

mav‖

Ta
fa0, (A 9)

which yields

− v̇‖
∂fa0

∂v‖
=−

1
Ta

Ẋ · (Zae∇Φ0 + Zae∇Φ1 +µ∇B)fa0, (A 10)

and the last two terms in the bracket cancel with the last term in

− Ẋ · ∇fa0 = −Ẋ · ∇r

[
n′a0

na0
+

(
mav

2
‖

2Ta
+
µB
Ta
−

3
2
+

ZaeΦ1

Ta

)
T ′a
Ta

]
fa0

+
1
Ta

Ẋ · (Zae∇Φ1 +µ∇B)fa0, (A 11)

leaving the right-hand side of (2.6) other than the collision term.

A.2. Expressions in the Boozer coordinates
Using the relation

b×V =
1
B
(I∇θ +G∇ζ )× (Vr∇r+ Vθ∇θ + Vζ∇ζ )

=
1

B
√

g
[(IVζ −GVθ)er + Vr(Geθ − Ieζ )], (A 12)

for an arbitrary vector in the configuration space V and

∇× b = ∇×
B
B

=
1
B
∇×B+

1
B2

B×∇B, (A 13)

we can express B∗ as

B∗ = B+
mav‖

Zae
∇× b

=
1
√

g
dψ
dr
(ιeθ + eζ )

+
mav‖

ZaeB
√

g

[
1
B

(
I
∂B
∂ζ
−G

∂B
∂θ

)
er +

(
B′

B
G−G′

)
eθ −

(
B′

B
I − I′

)
eζ
]

(A 14)
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and B∗
‖

as

B∗
‖
= B+

mav‖

Zae
GI′ − IG′

(ψ ′G+ χ ′I)
. (A 15)

Then, taking the dot products of (A 4) with ∇r, ∇θ and ∇ζ yields

dr
dt
=

1
ZaeBB∗‖

√
g

[(
µ+

mav
2
‖

B

)(
I
∂B
∂ζ
−G

∂B
∂θ

)
+ Zae

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)]

=
δ

γ

(
I
∂B
∂ζ
−G

∂B
∂θ

)
+

Zae
γ

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)
, (A 16)

dθ
dt
=

v‖
√

gB∗‖

[
ψ ′ι+

mav‖

ZaeB

(
B′

B
G−G′

)]
+

G
ZaeBB∗‖

√
g
(µB′ + ZaeΦ ′)

=
G
γ
(δB′ + ZaeΦ ′)+

v‖B
γ

(
Zaeχ ′ −

mav‖

B
G′
)
, (A 17)

dζ
dt
=

v‖
√

gB∗‖

[
ψ ′ −

mav‖

ZaeB

(
B′

B
I − I′

)]
−

I
ZaeBB∗‖

√
g
(µB′ + ZaeΦ ′)

= −
I
γ
(δB′ + ZaeΦ ′)+

v‖B
γ

(
Zaeψ ′ +

mav‖

B
I′
)
, (A 18)

respectively, and, using these expressions, we obtain the expression of the derivative
of v‖ as

dv‖
dt
= −

v‖

Bγ

[
Zae
(

I
∂B
∂ζ
−G

∂B
∂θ

)
Φ ′ −µ

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)
B′
]

+
ZaeB
maγ

[(
mav‖

ZaeB
G′ − χ ′

)(
µ
∂B
∂θ
+ Zae

∂Φ

∂θ

)
−

(
mav‖

ZaeB
I′ +ψ ′

)(
µ
∂B
∂ζ
+ Zae

∂Φ

∂ζ

)]
, (A 19)

where δ and γ are defined by (2.21) and (2.22), respectively.

A.3. Verification of (2.13)
In appendix B of García-Regaña et al. (2017), it is demonstrated that the relation〈∫

d3vvd · ∇rfa0

〉
= 0 (A 20)

still holds when fa0 is chosen as fa0 = faM exp (−ZaeΦ1/Ta) instead of fa0 = faM.
Although the definitions of the drift velocities in our global model differ from those
in the models used in García-Regaña et al. (2017) and other local studies, particularly,
B∗
‖
(X, v) appears in the denominators of the drift velocities, it can be shown that the

relation (2.13) is unaffected.
The demonstration of (A 20) for our model is analogous to that in García-Regaña

et al. (2017). In our coordinate system, (A 20) or (2.13) can be expressed as

Γa0 =
2π

V ′

∮
√

g dθ dζ
∫

D dv‖ dµ
dr
dt

fa0. (A 21)

https://doi.org/10.1017/S0022377820000598 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000598


Potential variation and global effects on impurity transport 25

FIGURE 19. Contributions of f1 (red) and f0 (green) to the radial carbon flux.

Thus, substituting (A 16) into (A 21) cancels the Jacobian, D
√

g, and leaves

Γa0 =
2π

Zaema

1
V ′

∮
dθ dζ

∫
dv‖ dµ

×
1
B

[(
µ+

mav
2
‖

B

)(
I
∂B
∂ζ
−G

∂B
∂θ

)
+ Zae

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)]
fa0. (A 22)

We can then perform the integrals in the velocity space to have

Γa0 =
na0

Zae
1
V ′

∮
dθ dζ

1
B2

×

[
2Ta

B

(
I
∂B
∂ζ
−G

∂B
∂θ

)
+ Zae

(
I
∂Φ

∂ζ
−G

∂Φ

∂θ

)]
e−ZaeΦ1/Ta (A 23)

and this expression can be transformed into

Γa0 =−
na0

Zae
Ta

V ′

∮
dθ dζ

(
I
∂

∂ζ
−G

∂

∂θ

)(
1
B2

e−ZaeΦ1/Ta

)
. (A 24)

Now, it can be seen that the integrals in θ and ζ vanish due to the periodic
dependence of B and Φ1 on those angle variables. In figure 19, Γa0 for C6+ is
plotted with the f1-part defined by (1.1). The numerical error is within the tolerance
compared with the f1-part.

Appendix B. Method for obtaining continuous distribution functions
In this study, continuous forms of physical quantities such as the distribution

function, fa1, the density variation, na1, and the non-uniform part of electrostatic
potential, Φ1, are obtained by the following method. First, the Boozer configuration
space is partitioned into small cells, where the r-direction is divided into 50 and both
the θ - and ζ -directions are divided into 40, respectively. Then, at each calculation step,
the quantity, of which the continuous distribution we want, is averaged in each cell
to obtain its coarse-grained distribution. After several time steps, the coarse-grained
distribution is averaged over that period. Finally, the continuous spectrum on each
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(a) (b) (c)

FIGURE 20. The ratio pI1/pI0 at r/a = 0.2 (a), r/a = 0.5 (b) and r/a = 0.8 (c) for the
ion-root case with Φ1, respectively.

flux surface is obtained by Fourier transformation along angle coordinates, θ and ζ .
In the r-direction, each Fourier component is interpolated with a third-order spline
function. Using this spectrum, smooth functions can be constructed.

Regarding this method, another approximation is used for some quantities. In global
calculation, the constraint

〈 fa1〉 = 0 (B 1)
cannot usually be imposed due to the radial drift. Thus, the flux surface average of
the density variation is not usually equal to zero, that is, its cosine-(0, 0) mode, ñ00(c)

a1 ,
does not vanish:

〈na1〉 = ñ00(c)
a1 6= 0. (B 2)

However, FORTEC-3D adopts adaptive source and sink terms in the drift-kinetic
equation (Huang et al. 2017), so that ñ00(c)

a1 � na0 is kept. We thus can ignore ñ00(c)
a1

and assume that the cosine-(0, 0) mode of Φ1 is zero as well:

〈Φ1〉 = Φ̃
00(c)
1 = 0. (B 3)

Appendix C. Pressure anisotropy
One may be concerned that the presence of appreciable density variations may

be inconsistent with the assumption that the pressure is a flux-surface function in
solving the magnetohydrodynamic (MHD) equilibrium. To address this concern, the
ratio between the uniform part and the non-uniform part of the total ion pressure

pI1

pI0
=

∑
I

nI1∑
I

nI0

(C 1)

is illustrated in figure 20 (the temperatures are assumed to be the same). It can be
seen that the ratio is of the order of 10−2 or less than that. Thus, while the pressure
anisotropy is large enough to generate numerically appreciable Φ1, it is small enough
not to affect the MHD equilibrium condition in the macroscopic scale.
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