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We describe a model for the speed of an internal bore as a function of amplitude
in continuous stratification of arbitrary form. The model is developed from the
Dubreil-Jacotin–Long theory for nonlinear solitary waves in the conjugate flow limit,
which represents an internal hydraulic jump, by allowing dissipation across the
jump. The bore speeds predicted by the model are consistent in both the small- and
large-amplitude limits with the waveguide intrinsic to the ambient stratification. The
model therefore represents a significant advancement over previous theories limited to
sharp two-layer stratification. The model shows good agreement with Navier–Stokes
simulations of both undular and turbulent internal bores generated by dam break into
a continuously stratified ambient with a finite pycnocline, predicting both the front
speed as well as the velocity and density structure through the bore. A model is
required for the structure of the energy dissipation, and we introduce a one-parameter
closure that produces excellent agreement with numerical results, particularly in the
parameter limit that maximizes the overall dissipation. By varying the dissipation
parameter, the model reproduces previous two-layer theories in the thin-pycnocline
limit, and suggests an improved two-layer front speed relationship. It is demonstrated
that, even for the sharp two-layer limit, continuous stratification, and particularly the
nonlinear waveguide, must be accounted for in order to accurately predict the bore
speed and structure.

Key words: geophysical and geological flows, internal waves, stratified flows

1. Introduction
Internal bores, propagating hydraulic jumps, are common in the atmosphere and

ocean and are important for turbulent mixing, mass and momentum transport, and
even biological processes. A famous example is the Morning Glory in the Gulf of
Carpentaria, Australia, an atmospheric undular bore generated by sea-breeze fronts
(Rottman & Simpson 1989). In the ocean, internal bores are associated with stratified
flow over topography (Cummins et al. 2003) and the shoaling of the internal tide
(Pineda 1999; Walter et al. 2012). Energy is generally lost through the jump, which
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FIGURE 1. Schematic for an internal bore in continuous stratification. Velocity and density
profiles are U(z) and ρ(z), where z is the vertical coordinate through the bore region.
The isopycnal displacement, η(z), is measured relative to the upstream ambient, where
the density profile is ρa(z− η). The bore speed is Cb.

results in either turbulent dissipation or the radiation of packets of rank-ordered
solitary waves, the latter termed an ‘undular bore’. Existing theories, which relate the
bore speed to its amplitude, have focused primarily on the limit of sharp two-layer
stratification. However, in the ocean and atmosphere, non-uniform vertical density
structure is common.

Here we present a new closure for the front speed of an internal bore in continuous
stratification of arbitrary structure. Two-layer theories, which we summarize in § 2.2,
have focused considerable effort on the vertical structure of the dissipation through
the bore, in order to provide a closure to predict the bore speed versus amplitude.
Here we show that the effect of continuous stratification, even for a small but finite
pycnocline width, can significantly impact the waveguide properties, and therefore
has a substantial impact on the bore propagation. The waveguide effect in fact exerts
a much greater impact on the bore characteristics than the dissipation structure. In
§ 3 we describe the model for bore propagation in continuous stratification. In § 4,
we describe Navier–Stokes simulations of dam-break internal bores. The model and
simulations are compared in § 5, in terms of the bore speed, continuous velocity
and density profiles, and dissipation structure. We also demonstrate a connection
between the model and nonlinear solitary-wave solutions from Dubreil-Jacotin–Long
(DJL) theory. Finally, in § 6 we discuss the behaviour of the model and simulations
in the two-layer limit. We compare the results to previous two-layer models, and,
guided by the continuous model results, we derive an improved two-layer front speed
relationship.

2. Internal bores: previous theories
2.1. Problem description

We consider an internal hydraulic jump propagating into a quiescent ambient fluid,
generated, for example, by a dam-break release of an initially discontinuous interface
(see figure 1). Through the jump, the density ρ(z) and isopycnals (streamlines) are
displaced a distance η(z) relative to the upstream ambient, where the density profile
is ρa(z−η). The velocity is U(z) in a frame of reference moving with speed Cb, which
is assumed constant (the velocity is positive to the right). The isopycnal (streamline)
displacement relative to the ambient is η(z).

2.2. Internal bores in two-layer stratification
Several models have been proposed for the two-layer limit that predict the bore speed,
Cb, as a function of the interface location in the ambient, ha (measured from the
bottom), and the bore height, hb. To obtain jump conditions, mass and horizontal
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momentum conservation laws are enforced in each layer separately. However, an
additional assumption is required to obtain an expression for the pressure jump
across the bore. Several closures have been proposed, based on assumptions about the
distribution of pressure (Yih & Guha 1955), or more often on the energy dissipation
across the jump (see Baines 1995). The theory by Chu & Baddour (1977) and Wood
& Simpson (1984) (often termed CBWS) assumes that energy is conserved in the
contracting layer and all dissipation occurs in the expanding layer. Klemp, Rotunno
& Skamarock (1997) (termed KRS) developed a closure that conserves energy in the
expanding layer. The KRS closure reproduces the Benjamin (1968) gravity current
front condition in the limit ha→ 0, while that of CBWS does not. Li & Cummins
(1998) (termed LC) detailed a more general theory in which the energy loss could
be distributed arbitrarily between layers, yielding a family of solutions for the bore
speed.

Borden, Meiburg & Constantinescu (2012), in a numerical investigation of the
energy budgets for two-layer bores, found that energy could be transferred from
the upper to the lower layer by turbulent mixing. They derived a closure for the
bore speed based on a semi-empirical relationship for the shear-layer thickness
associated with turbulent mixing and the associated energy dissipation, termed the
Borden–Meiburg circulation (BMC) model. In subsequent work (Borden & Meiburg
2013b) the same authors introduced a model to parametrize the turbulent mixing
across the bore, arguing that conservation of vorticity (rather than energy) should
be enforced through the bore to account for the fact that vertical momentum is not
otherwise considered in the conservation laws. This resulted in two new closures,
one in the limit where the sharp two-layer stratification is preserved through the
bore, termed the vortex sheet (VS) model, and an additional closure that accounts for
interface thickening due to turbulent mixing, termed the diffuse vortex sheet (DVS)
model.

Despite the ubiquity of two-layer theories, the problem continues to be open. This
is in part because none of these theories has yet produced ideal agreement with
observations and numerical results over the full range of parameter values. One major
issue is that they all assume steady flow in a frame moving with the bore. This is an
inherent simplification, because internal hydraulic jumps are in fact often dispersive.
Recent work by Esler & Pearce (2011) investigated unsteady undular bores using an
extension of Whitham (1974) modulation theory applied to a fully nonlinear, weakly
dispersive internal wave model.

The inclusion of downstream interface thickness in the BMC and DVS models and
their apparent improvement over sharp two-layer models suggests that continuous
stratification is an important consideration. The approach we describe incorporates
stratification through first principles by directly considering the ambient density
structure in the conservation laws. As a result, we are able to predict the velocity
and density structure through the bore a priori, resulting in improved agreement
with simulation results without the need for semi-empirical mixing parametrizations.
Moreover, our results suggest that it is in fact the ambient waveguide, rather than
turbulent mixing, that structures internal bore propagation. We return to a discussion
of two-layer theories in § 3 after first discussing our continuous model.

2.3. Nonlinear internal waves and conjugate states in continuous stratification
To develop our theory, we view an internal bore as a limiting form of a nonlinear
solitary wave, which can be described by the DJL equation (Dubreil-Jacotin 1934;
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Long 1953; Stastna & Lamb 2002). In a frame of reference moving with the solitary-
wave speed c, the streamline displacement, η(x, z), measured relative to the ambient
with density profile ρa(za), where za = z− η(x, z), is given by

∇2η+ N2(z− η)
c2

η= 0, (2.1)

subject to boundary conditions η= 0 at z= 0,H and η→ 0 as x→±∞. Here N is the
Brunt–Väisälä frequency, N2=−(g/ρo) dρa/dza, and ρo is a constant reference density.
While (2.1) neglects ambient shear, it can be incorporated (see Stastna & Lamb 2002).

Lamb (2002) showed that the wave amplitude increases with c up to one of two
limiting outcomes (depending on ambient stratification and shear). (i) Overturning
occurs when the local velocity matches the wave speed (u = c in the laboratory
frame). A necessary condition for overturning is that N be non-zero at the boundary,
i.e. z= 0 (z= 1) for waves of elevation (depression) (Lamb 2002). (ii) DJL solutions
become broad-crested and approach an infinite-wavelength solution that, in the
half-plane, represents an energy-conserving bore (Brown & Christie 1998; Lamb &
Wan 1998). In this limit, the flat isopycnals through the wave are said to be conjugate
to those in the ambient, and we refer to this solution as the conjugate state. Lamb
& Wan (1998) found conjugate-state solutions for arbitrary stratification and shear. In
the two-layer Boussinesq limit, Lamb (2000) showed that the conjugate-state speed is
Ccs= 0.5(g′H)1/2, and the upstream pycnocline depth is found at mid-depth hcs=H/2,
both independent of ha, recovering the energy-conserving CBWS and KRS two-layer
solutions.

3. A theory for internal bores in continuous stratification
Because the conjugate state is energy-conserving, only one solution exists for a

given ambient density profile. To develop a theory for the bore speed as a function of
amplitude, dissipation can be incorporated into the conjugate flow theory to produce
a family of solutions for a given profile, as we now illustrate.

3.1. Conservation equations
The conservation equations for an internal jump in continuous stratification follow the
development in Lamb & Wan (1998), Lamb & Wilkie (2004) and White & Helfrich
(2008). Referring to figure 1, we assume that there exists a region behind the bore in
which the flow is uniform in x, and the pressure hydrostatic. Considering nominally
inviscid motion slightly modified by dissipation, Bernoulli’s equation can be written
in a frame moving with Cb, along a streamline between the ambient (where variables
have subscript a) and the region behind the bore (without subscripts) as

1
2ρoC2

b + ρa(za)gza + pa(za)= 1
2ρoU(z)2 + ρa(z− η)gz+ p(z)+∆(z). (3.1)

Here ∆(z) represents a Bernoulli head loss with arbitrary vertical structure. Here
and subsequently, we make the Boussinesq approximation by assuming that density
variation is weak relative to a fixed reference value, ρo, and is therefore only important
in the gravity term. Diffusion of density is also neglected, implying that density
isopycnals coincide with streamlines, i.e. ρ = ρ(ψ). By continuity, the velocity in the
moving frame is related to the bore speed by U(z)= Cb(ηz − 1) (positive velocity is
in the direction of bore propagation). Hydrostatic pressure gives dp/dz=−ρa(z− η)g
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and dpa/dza = −ρa(za)g through the bore and ambient regions, respectively. After
(i) taking the vertical derivative, d/dz, of (3.1), (ii) substituting the continuity and
hydrostatic pressure relations, and (iii) noting that a vertical derivative of any quantity
is related to its derivative in the ambient by d/dz = (1 − ηz) d/dza, an equation is
obtained for the streamline displacement,

ηzz + N2(z− η)
C2

b
η+ ∆z

ρoC2
b(ηz − 1)

= 0, (3.2)

which is subject to the boundary conditions η(0) = η(H) = 0. This constitutes an
eigenvalue problem for the bore speed, Cb, and the streamline displacement, η(z). In
the linear limit η→ 0 and with ∆= 0, (3.2) reduces to the linear equation governing
normal modes in a continuously stratified Boussinesq fluid.

As with two-layer theories, conservation of momentum must also be enforced
between the bore and ambient regions, resulting in an additional constraint,∫

b
[p(z)+ ρou2(z)] dz=

∫
a
[pa(za)+ ρoC2

b] dza. (3.3)

Using (3.1) to write pa(za) in terms of p(z) and again using d/dz= (1− ηz) d/dza, the
hydrostatic relation and integration by parts yields∫ H

0

[
1
4
ρoC2

bη
3
z −
(

1− 1
2
ηz

)
∆(z)

]
dz= 0. (3.4)

In the special case ∆ = 0, (3.2) and (3.4) are equivalent to the conjugate state of
Lamb & Wan (1998). The addition of the arbitrary ∆(z) term allows for a range
of solutions, but requires an appropriate closure. Complete derivations of the non-
Boussinesq versions of both (3.2) and (3.4) are given in appendix A.

3.2. Bernoulli head loss
We assume that the head loss can be written as the product of a constant and a vertical
shape function, ∆(z)=∆o f (z). Given an assumption for f (z), ∆o (along with Cb) is
part of the solution obtained from (3.2) and (3.4). The shape function distributes the
head loss across isopycnals, and is the continuous analogue of the two-layer closures
that distribute dissipation arbitrarily between layers.

To illustrate, consider the following distribution, which is linear in the non-
dimensional density, or buoyancy, b(z)= (ρ − ρ(H))/(ρ(0)− ρ(H)),

∆(z)=∆o f (z)=∆o
[

1
2 + ε

(
b(z)− 1

2

)]
, (3.5)

where ∆o = ∆(0) + ∆(H) and ε = (∆(0) − ∆(H))/∆o. Here ∆o/2 is the arithmetic
mean head loss (and the loss on the mid-density isopycnal, ∆o/2=∆b=0.5), while ε
measures the difference relative to the mean. The one-parameter family in ε distributes
dissipative losses non-uniformly across isopycnals, and recovers the LC general theory
in the two-layer limit, as illustrated by the following cases.

(a) ε = 1. Here ∆(z)=∆ob(z), confining the loss near the bottom expanding region.
In the two-layer limit, b(z) is a step function and (3.5) is equivalent to the CBWS
closure.

(b) ε=−1. Here ∆=∆o(1− b(z)), which distributes the head loss through the upper
contracting region. In the two-layer limit, (3.5) is equivalent to the KRS solution.
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(c) ε = 0. Here ∆ = ∆o/2 = const., which distributes the head loss uniformly. In
the two-layer limit, this is equivalent to the Borden & Meiburg (2013b) vorticity
conservation VS model (see § 3.3).

(d) ε→−∞. In this case, ∆(z)=∆oε(b(z)− (1/2)) and ∆(0)=−∆(H), implying
that energy is gained in the lower layer at the expense of the upper layer.
Although ∆o→ 0, the product ε∆o is finite, and it will be shown later that this
solution results, perhaps counter-intuitively, in a larger rate of total dissipation
than the other special cases (a)–(c).

In the two-layer limit, the general LC theory can be written in terms of ε as

Cb

(g′H)1/2
=
[

2rR2(1− rR)2(1− ε(1− r− rR))
(rR2 − 3rR+ R+ 1)(1− rR)(1− ε)+ (rR2 − 3rR+ 2)rR(1+ ε)

]1/2

,

(3.6)
where R = hb/ha is the ratio of the bore height to the ambient interface height, r =
ha/H and g′ = g(ρ(0) − ρ(H))/ρo. It can be verified that (3.6) recovers the CBWS
and KRS solutions for ε = 1 and ε = −1, respectively. For continuous stratification,
the structure of ∆(z) may be more complex. In § 5.5 we compare (3.5) with profiles
of dissipative losses from Navier–Stokes simulations.

With the head loss given by (3.5), the eigenvalue problem governing the streamline
displacement through the bore (3.2) reduces to

ηzz + N2(z− η)
C2

b

(
η− ε∆o

ρog′

)
= 0, η(0)= η(H)= 0. (3.7)

3.3. Vorticity production
If (3.2) is multiplied by Cb, one then obtains a general statement about vorticity
production downstream of the bore,

Uz =Cbηzz =−N2(z− η)
Cb

η− 1
ρoCb

d∆
dza
. (3.8)

Downstream vorticity arises from baroclinicity (first term on right) and gradients
of dissipation across streamlines (lines of constant Cbza) (second term on right). In
the absence of baroclinic effects, this result has a well-known counterpart in rotating
single-layer shallow-water flows, where changes in potential vorticity q across a steady
jump are related to gradients of the Bernoulli function across streamlines through
[q] = d[B]/dψ , where B is the Bernoulli function and ψ is the streamfunction (see
Pratt & Whitehead 2008, § 3.5). When ε = 0 in (3.5), the dissipation is the same
along all streamlines, and downstream vorticity arises solely from baroclinic effects.
Thus the two-layer VS model of Borden & Meiburg (2013b), which is based on
vorticity production by baroclinic effects only, is recovered from (3.6) with ε = 0.
(This result is also noted more recently by Borden & Meiburg (2013a).)

3.4. Energy dissipation
The total rate of energy dissipation for a steady Boussinesq stratified bore is given by
the difference in energy flux between sections b and a, respectively, in figure 1,

D=
∫

a
Cb

[
pa + 1

2
ρoC2

b + ρa(z− η)gza

]
dza −

∫
b

U
[

p+ 1
2
ρoU2 + ρa(z− η)gz

]
dz. (3.9)
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Through manipulations similar to those described in § 3.1, (3.9) can be simplified to

D=
∫ H

0
U(z)∆(z) dz=

∫ H

0
Cb(1− ηz)∆(z) dz, (3.10)

where D > 0 implies a net energy loss, as required for a physically realistic bore
solution.

In the two-layer limit, this expression reduces to D = el + eu, the sum of the
dissipation in the lower and upper layers, respectively, as given by the formulas (9)
and (11) in Li & Cummins (1998). In terms of ∆o and ε,

eu = 1
2∆oCbH(1− ε)(1− r), (3.11)

el = 1
2∆oCbH(1+ ε)r, (3.12)

D = 1
2∆oCbH(1− ε(1− 2r)). (3.13)

These expressions illustrate that the case with ε → −∞ and ∆oε finite, i.e. D =
−∆oεCbH(1−2r)/2, produces the maximum dissipation compared with other ε values.
Even though the head losses are equal and opposite, ∆(0)=−∆(H)=∆oε/2, the loss
in the contracting layer is carried by a faster current, Cb(1 − r)/(1 − Rr), so that it
more than offsets the energy gain in the lower layer with slower speed, Cb/R, such
that |eu|> |el| and D> 0.

3.5. Trapped cores
It is possible for (3.2) to develop solutions for which za= z− η(z)< 0, which implies,
unphysically, that isopycnals originate from za < 0 (Lamb & Wan 1998; Stastna &
Lamb 2002; Helfrich & White 2010). The onset of this condition occurs when ηz =
1, or U(z) = 0 in the wave frame. Lamb & Wilkie (2004) found solutions to the
conjugate DJL equation beyond this limit by assuming a uniform trapped core of
constant density ρ = ρa(0) (for bottom-propagating waves), and Helfrich & White
(2010) used a similar framework to find solutions to the full DJL equation (2.1) with
a trapped core. In these methods, the flow must be matched along the core boundary
with the DJL equation outside. A simpler approach, suggested by Helfrich & White
(2010) and King, Carr & Dritschel (2010), is to ‘virtually’ extend the ambient density
profile ρa(za) below za = 0 by smoothly and rapidly matching the stratification at the
boundary to a uniform-density region ρa(−∞), only slightly greater than ρa(0), for
z− η < 0. This results in a uniform-density core with approximately zero circulation.
For example,

N2(z− η)=N2(0) exp[−((z− η)/δ)2], z− η < 0. (3.14)

Incorporating this approximation into (3.2) allows smooth solutions for η(z)
throughout the domain. We employ this approximation with δ = 0.01H only when
z − η < 0 somewhere in the domain. In practice, this occurs only where there is
appreciable ambient stratification near z= 0 (Lamb 2002).

3.6. Numerical solution method
The continuous model, (3.4) and (3.7), can be solved by a nested iterative approach
as follows (from the inner- to the outermost levels). (i) Beginning with an initial
value for ηz(0)≡ η′o, a proxy for the bore amplitude, find a value of Cb that satisfies
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the eigenvalue problem (3.7) by a shooting method. That is, integrate the ordinary
differential equation (ODE) with initial values η(0) = 0, ηz(0) = η′o, iterating on Cb

until the upper boundary condition, η(H) = 0, is satisfied. (ii) Iterate on η′o until
the bore amplitude, hb ≡

∫ H
0 b(z) dz, is equal to the desired value. (iii) Iterate by

varying the head loss constant, ∆o, until the momentum conservation equation, (3.4),
is satisfied.

4. Numerical simulations
4.1. Numerical method and set-up

To test the theory, numerical simulations were performed for internal bores released
from a dam-break initial condition, with nominally two-layer stratification of
varying interface thickness. We solve the two-dimensional Boussinesq Navier–Stokes
equations,

∂u
∂t
+ u · ∇u=−∇p− bk̂+ 1

Re
∇2u, ∇ · u= 0,

∂b
∂t
+ u · ∇b= 0, (4.1a−c)

where p is the dimensionless pressure that remains after removing the hydrostatic part
due to ρ(H), b is the dimensionless buoyancy as defined in § 3.2, and k̂ is the unit
vector in the positive z direction. Velocities are scaled by

√
g′H, lengths by H, time by

H/
√

g′H, pressure by ρog′H, and Re is the Reynolds number. Model results presented
below are scaled in the same manner.

The numerical model uses a finite-volume discretization with a second-order
pressure projection method based on that of Bell & Marcus (1992) and a Godunov-
type advection scheme. This non-oscillatory finite-volume formulation is ideal for
internal jumps with sharp gradients in density and velocity, and has been used to
simulate gravity currents (White & Helfrich 2008, 2012) and nonlinear solitary waves
(cf. Lamb 2002), correctly capturing phase speeds and exhibiting minimal energy loss
over large distances.

Calculations were carried out in a rectangular domain spanning −L/26 x6L/2 and
06 z6H, where L= 32 and H= 1, with a resolution (x× z) of 8192× 256. Boundary
conditions were free slip and a dam-break initial condition was used, with u= 0 and
an initial buoyancy field

b(x, z) = (b̂− b̂(∞, 1))/(b̂(∞, 0)− b̂(∞, 1)), (4.2)

b̂(x, z) = 1
2 − 1

2 tanh[λ(z− zo(x))], (4.3)

zo(x) = 1
2(hd + ha)− 1

2(hd − ha) tanh(λx/2). (4.4)

This results in a virtual dam of height hd, that transitions to an ambient (rescaled)
density profile, ρa(z) = (1/2) − tanh[λ(z − ha)]/2 with a nominal interface located
at ha and a pycnocline thickness described by the parameter λ (thickness ∼1/λ).
Approximately 150 simulations were conducted spanning λ = [4, 8, 12, 24, 64],
r ≡ ha/H = [0.1, 0.2, 0.3, 0.4] and a range of dam heights between hd = [0, 1] for
each (λ, r) combination. The Reynolds number for the simulations is Re≡√g′H3/ν=
40 000. While there is always a small amount of numerical dissipation, the resolved
viscous dissipation, globally integrated, was typically 85 % of the total energy loss
calculated from the residual of the kinetic energy budget.
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FIGURE 2. Internal bore properties from numerical simulations (hd = 0.4, r= 0.2, λ= 12
shown as an example). (a) Bore height hb(x) and mean value hb, taken between the initial
dam location xd and the front position xf (t= 20). Bore height at the location of the first
maximum is hbmax . (b) Bore speed Cb, obtained by linear regression of front position versus
time.

4.2. Internal bore properties
In order to compare the theory with the numerical simulations, the bore speed Cb and
effective height hb were extracted from the results. The height is taken to be

hb(x)=
∫ H

0
b(x, z, t) dz, (4.5)

which makes the hydrostatic pressure behind the bore equivalent to that of a sharp
two-layer bore of the same height. This definition was also used by Borden et al.
(2012) for internal bores and by Marino, Thomas & Linden (2005) for the equivalent
thickness of a gravity current. The mean height, hb, is the average value of hb(x)
between x = [0, xf ], where xf is the front position, taken as the point at which the
displacement is a quarter of the maximum, hb(xf )= [hbmax − h̃a]/4, where h̃a= hb(L/2).
(Note that, because h̃a is the equivalent thickness, only in the sharp two-layer limit
is it necessarily the case that h̃a = ha, although in general they are very nearly the
same.) The bore speed Cb is calculated for each case by linear regression of xf against
t. From figure 2(b), it can be seen that the regression is highly linear; the uncertainty
in Cb is generally less than 0.1 % of its mean value.

Figure 3 shows the time evolution of an undular bore (a) and a turbulent bore
(b) for r = 0.2 and λ = 24. The undular bore, which evolves from an initial dam
height hd = 0.5, is transient and continually radiates solitary-like waves from the
front (cf. Esler & Pearce 2011). The turbulent bore, with initial dam height hd = 0.9,
exhibits a smooth monotonic front with Kelvin–Helmholtz vortices and turbulent
mixing behind. While there is a continuum between these states, depending on hd
for a given [λ, r], this dichotomy provides a reasonable means of classifying the
simulations.

Figures 4 and 5 illustrate the effect of interface thickness, i.e. λ, on undular and
turbulent bores. For undular bores, r= 0.2, hd = 0.5, a decrease in interface thickness
affects the rate of internal wave radiation, producing an increasing number of crests
with decreasing thickness (figure 4). For turbulent bores, perhaps better termed
monotonic bores (figure 5), increasing interface thickness reduces the turbulent
mixing, suppressing the Kelvin–Helmholtz instability entirely for the λ = 4 case.
The onset of a critical Richardson number, Ri = 0.25, may be a good measure to
distinguish between the cases, as discussed in § 5.1.
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FIGURE 3. (Colour online) Results from dam-break simulations shown at five different
times (same for both panels): (a) undular bore (hd = 0.5, r = 0.2, λ= 24); (b) turbulent
bore (hd = 0.9, r= 0.2, λ= 24). Greyscale (colour online) shows density.
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FIGURE 4. (Colour online) Undular bores with varying interface thickness, λ, as shown:
(a) density field; (b) velocity, density and Richardson number profiles from model, with
ε→−∞ (solid lines), and simulations (dashed lines).

5. Comparison between simulations and theory
5.1. Velocity and density profiles

The shear and stratification within the bore are important properties because together
they influence the onset of shear instability and turbulent mixing. Profiles of mean
velocity U(z), density b(z) and gradient Richardson number Ri = N2/(dU/dz)2 are
shown in figures 4 and 5 (right panels) along with model predictions, using ε→−∞.
Mean profiles were calculated from the simulations by averaging over x = [0, xf ],
and vertically shifting to align local profiles with the mean bore thickness. That is,
we average U(x, z̃) and b(x, z̃), where z̃ = z − (hb(x) − hb). This shift means that
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FIGURE 5. (Colour online) Turbulent (monotonic) bores with varying λ, as shown. Details
are as described in figure 4. Critical Richardson number (Ri= 0.25) shown by blue line.

undular motions do not contribute to pycnocline thickness, while still preserving local
gradients, leaving shear, N2 and Ri unaltered. The instantaneous profiles were then
averaged over time between t=[10,Tf ], where Tf is the final time for each simulation.

For the undular bores shown in figure 4, the model prediction based on ε→−∞
and the simulations are almost indistinguishable. Here the Richardson number was
always greater than unity, so it was not shown over the entire range. For turbulent
(or monotonic) bores (figure 5), the agreement is still quite good. The minimum
Richardson number is well predicted by the model, and shear instabilities are well
correlated with minimum Ri that approach 1/4. Note that the velocity and density
profiles may be somewhat sensitive to the relative proportions of the turbulent to
smooth frontal regions. These proportions may change to some degree as the bore
propagates and both regions grow (see e.g. figure 3b). However, the time averaging
should to some degree account for these effects.

5.2. Bore speed
For comparison with the Navier–Stokes simulations, theoretical curves for Cb(hb) were
generated over a range of (λ, r) values using the conjugate bore theory described
in § 3. The effect of dissipation model was also studied by varying ε. Results are
shown in figure 6 for r = 0.1 (a–c), 0.2 (d–f ), 0.3 (g–i) and 0.4 (j–l). The KRS
two-layer model is shown for comparison. Each model curve is terminated at the
energy-conserving conjugate state, ∆o=0, which is independent of ε for a given (λ, r),
since D< 0 for larger amplitude.

In general, the agreement between the model and the simulations is excellent.
The effect of the finite pycnocline is significant, in general decreasing Cb for
increasing pycnocline thickness. The model reproduces the correct small-amplitude
limit, where the bore speed approaches the linear long-wave phase speed, Cb → co.
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FIGURE 6. (Colour online) Bore speed versus amplitude. Comparison between model and
theory for bores with varying ambient stratification. Symbols (with error bars) represent
numerical results based on Cb and hb: λ = 4 (E), λ = 12 (@), λ = 24 (A). The energy-
conserving conjugate state is denoted by ∗. Solid symbols show the hd = 0.5 and hd = 0.9
cases for comparison with figures 4 and 5. The curves show the theoretical results for
varying ε and λ (see legends): KRS two-layer model; ε = 1 (continuous CBWS); ε = 0
(continuous VS); ε = −1 (continuous KRS); ε → −∞ (continuous maximal dissipation
(MD) model).

For large-amplitude bores, all models (independent of ε) tend to the conjugate-state
limit, consistent with DJL nonlinear solitary-wave solutions, and demonstrating
that the nonlinear ambient waveguide is structuring the bore speed. The two-layer
theories, regardless of the model for dissipation or turbulent mixing, are incapable of
reproducing the effect of ambient interface thickness on the waveguide.

For larger values of the ambient lower-layer thickness (r= 0.3, 0.4), the agreement
is nearly exact up to the conjugate state, and, moreover, is nearly independent of
ε. For r = 0.1, 0.2 and intermediate values of the amplitude, the theory is more
sensitive to the dissipation model, although the agreement with the simulations is still
reasonable for most ε. As with two-layer bores, the continuous analogue of the KRS
model (ε = −1) better captures the bore speed at large amplitude than the CBWS
analogue (ε= 1). However, the best agreement for all values of (λ, r) is found for the
ε→−∞ model.
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The interface thickness has an even greater influence on the front speed than
the dissipation model. With increasing thickness, the speed curves shift downwards,
consistent with the ambient waveguide (e.g. decreasing long-wave speed co and
conjugate-state speed Ccs). Even a small but finite ambient pycnocline thickness
has a significant effect on the bore speed relative to the two-layer limit. Note that
Borden & Meiburg (2013b) also found a decrease in bore speed for finite downstream
pycnocline thickness, which their semi-empirical model captured relative to two-layer
theories of KRS and CBWS and their own VS model. However, they do not address
the role of finite pycnocline thickness on the ambient waveguide, which we show
here to have a first-order effect on the bore speed.

5.3. Connection with the nonlinear internal waveguide and DJL theory
The transition from undular to monotonic bores with turbulent mixing can be viewed
as a continuum of solitary waves of increasing amplitude, consistent with the DJL
theory discussed in § 2.2 and also the dispersive two-layer theory of Esler & Pearce
(2011). There is a direct link between the bore speed, Cb, and the intrinsic speed of
nonlinear internal waves at the bore front. To illustrate this link, we have calculated
the best-fitting solitary-wave solution to the DJL equation (2.1) and compared it
to the leading wave at the bore front. DJL solutions can be characterized by their
available potential energy, APE = ∫∫∫ η(x,z)0 b(z − η(x, z)) − b(z − ξ) dξ dx dz (Stastna
& Lamb 2002). For comparison, we calculate from simulations the APE at the
bore front, between the ambient and the point of the first maximum, hbmax . Because
solutions to (2.1) are symmetric about the crest, we compare them with DJL solitary
waves with an APE of twice this value. Results are shown in figure 7 for waves
of increasing amplitude (increasing hd) for r = 0.2, λ = 8. Figure 8 shows the DJL
predictions for solitary-wave speed as a function of amplitude compared against the
simulation results using the bore speed and the maximum amplitude at the first crest.
DJL solutions that develop trapped cores (see § 3.5) are extended in the core region
using (3.14).

For both the front shape and the front speed, it is clear that the agreement
between the simulations and DJL solutions is almost exact up to the conjugate
state, the maximum amplitude for DJL solutions. This illustrates that the bore speed
is intrinsically linked to the characteristics of the waves at the front, and the nonlinear
DJL model is able to capture very accurately both the relationship Cb(hbmax) and the
shape of the front. Our hydraulic model for the bore speed can therefore be viewed
as the function that connects hbmax to hb. In this view, the upstream condition sets the
bore speed, which then determines the characteristics of waves at the front, e.g. their
amplitude and wavelength, and whether the bore is undular or monotonic/turbulent.

To further illustrate the connection between the bore model and the waves at
the front, figure 9 shows the relationship between hbmax and hb. These results can
be compared against two limits. For a smooth monotonic bore, hbmax = hb, i.e. a
1:1 relationship, shown in figure 9. For undular bores, hbmax > hb, with a specific
relationship that is determined by a complex balance between nonlinear and dispersive
effects. However, in the weakly nonlinear Korteweg–de Vries (KdV) limit for a
single-layer fluid, Whitham modulation theory predicts that the amplitude of the
leading wave is twice the bore amplitude (Whitham 1974), and this 2:1 curve is
also shown in figure 9. (Note that Esler & Pearce (2011) extended the Whitham
modulation theory to fully nonlinear weakly dispersive two-layer undular bores.)
Most of the simulations for r = 0.1 and r = 0.2 result in hbmax > hb, i.e. undular
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FIGURE 7. (Colour online) Characteristics of the bore front compared with the DJL
nonlinear solitary-wave theory. Greyscale plot (colour online) shows density field from
simulations for bores of increasing amplitude. Solid line is the b = 0.5 isopycnal from
the DJL solution, obtained by matching APE for x > hbmax .

bores. As the conjugate state is approached, bores become monotonic with hbmax ≈ hb.
The Whitham limit should apply for bores with a deep upper layer (small r), a thin
interface (large λ) and small bore amplitude, so the most relevant comparison shown
in figure 9 is for r = 0.1 and λ = 24. Indeed, the small-amplitude solutions for this
case initially follow the 2:1 line, but then diverge, eventually approaching the 1:1 line
as the conjugate state is approached. The r= 0.3 and r= 0.4 cases each approximately
follow the 1:1 line, suggesting nearly monotonic bores for all amplitudes.

5.4. Energy dissipation
Results for the total energy dissipation, D, from simulations and model predictions are
compared in figure 10. The model results are calculated from (3.9) across a control
volume applied between x= [0, xf ] and subsequently averaged over time between t=
[10, Tf ]. The model predictions are based on (3.10).

Figure 10(a,b) compares the dissipation from simulations versus the model with
varying ε. For all cases, the ε → −∞ model produces the greatest net dissipation
as compared with the CBWS and KRS analogues, despite the energy gain in the
lower layer, as discussed in § 3.3. This explains the success of the ε→−∞ model in
predicting the bore speed, as discussed in § 5.2. The higher rate of dissipation reduces
the bore speed (for solutions with ∆o > 0, up to the conjugate state), correcting the
tendency of the other models to overpredict Cb, which is also seen in the two-layer
limit (see Borden et al. 2012).
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FIGURE 8. (Colour online) Bore speed versus maximum amplitude, hbmax , compared with
the DJL theory. DJL theory: solid lines. Numerical results: λ= 4 (E), λ= 8 (@), λ= 24
(A). Solid squares: conjugate state. Solid circles: onset of trapped core solutions.

For small-amplitude bores, the dissipation tracks the model solutions fairly well,
falling either along the KRS or ε → −∞ curves. However, for larger amplitudes,
the dissipation is less than the model prediction, and becomes negative at a smaller
amplitude than the model conjugate state (the D=0 solution). The negative dissipation
signifies an energy gain over the region where the bore characteristics are measured.
Note that this region encompasses only the rightward-propagating bore, and, as must
be the case, when the leftward-travelling disturbance created by the initial dam break
is also included in the calculation, there is a net energy loss over the entire volume.

Figure 10(c,d) shows the simulation results versus the ε→−∞ model curves for
a range of λ. The effect of λ is subtle. For r = 0.1 the maximum dissipation occurs
for the mid-range, λ= 12, in both the model and simulations for all amplitudes. For
r= 0.2 the model predicts that the maximum dissipation occurs at λ= 4, whereas the
λ= 12 simulation produces the maximum level of dissipation. Overall, the dissipation
from the simulations is less than any of the model predictions for larger-amplitude
bores. Nonetheless, the model captures the order of magnitude of the qualitative trends
of dissipation with amplitude fairly well.

The net dissipation is due to a combination of turbulent mixing and wave drag,
where the latter is due to correlations in pressure and velocity fluctuations that arise
when averaging over the undular bore. Previous studies (e.g. Borden et al. 2012) have
focused on turbulent mixing alone as the source of dissipation. However, it becomes
clear from figure 10 that the large-amplitude turbulent bores, which are characterized
by Kelvin–Helmholtz instabilities and mixing behind the front, have smaller (and in
some cases negative) dissipation than the intermediate-amplitude bores, which often do
not exhibit turbulent mixing. These results suggest that wave drag rather than turbulent
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FIGURE 9. (Colour online) Maximum bore amplitude versus mean bore amplitude.
Numerical results: λ=4 (E), λ=8 (@), λ=24 (A). Solid symbols: conjugate state. Dashed
line is 1 : 1 relationship. Solid line represents the prediction of Whitham modulation theory
in the single-layer KdV limit, (hbmax − ha)= 2(hb − ha).

mixing is the dominant mechanism of energy dissipation. This is consistent with the
results of § 5.3, which showed that the internal wave characteristics at the bore front
are of leading-order importance in determining the bore characteristics.

5.5. Velocity and head loss in isopycnal coordinates
The conjugate bore model, like the full DJL model, can be readily formulated in
isopycnal coordinates. Moreover, the dissipation closure we have introduced casts the
head loss as a function of buoyancy. It is therefore instructive to compare the model
predictions and simulation results in isopycnal coordinates. Figure 11 shows profiles
of velocity and Bernoulli head loss in this coordinate system.

From the simulations, we calculate the local head loss in isopycnal coordinates from
the Bernoulli function (3.1),

∆(b(x, z))= 1
2(C

2
b − u2 −w2)− bη+ pa(z− η)− p, (5.1)

where u(x, z), w(x, z), p(x, z) and b(x, z) are the local fields, η(x, z)= z− za(b) and u
is in the frame moving with Cb. We calculate the average values of ∆ between [0, xf ]
and between t= [10, Tf ] for each simulation. The velocity profiles are averaged from
the simulations as described in § 5.1 to yield U(b(z̃)).

The simulation results are compared with model predictions using three separate
dissipation models: the continuous VS model, ε = 0; the continuous KRS model,
ε=−1; and the dissipation maximizing model, ε→−∞. For the velocity profiles, the
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FIGURE 10. (Colour online) Bore dissipation versus amplitude. Comparison between
the model and theory for varying dissipation models (a,b) and interface thickness (c,d).
Symbols represent numerical results based on measured D and hb: λ= 4 (E), λ= 12 (@),
λ = 24 (A). Solid symbols show the hd = 0.5 and hd = 0.9 cases for comparison with
figures 4 and 5. In panels (a,b), curves show the theoretical results for varying ε, for
(a) r= 0.1 and (b) r= 0.2. In panels (c,d), curves show the theoretical results for varying
λ, for (c) r= 0.1 and (d) r= 0.2.

model–simulation agreement is very good for all cases. The effect of the dissipation
models is almost indistinguishable, despite the fact that the model choice has a
demonstrable effect on Cb (see figure 6).

The head loss, for both model and simulations, is normalized by the maximum
value, ∆max. This is instructive because, for each of the three models, ε=[0,−1,−∞],
the maximum loss occurs for b= 0, which corresponds to the upper boundary, z=H.
Based on this normalization, the differences between the VS model (uniform ∆), the
KRS model (energy conservation at the lower boundary, ∆(b= 1)= 0) and the ε→
−∞ model (energy gain at the lower boundary, ∆(b= 1)=−∆(b= 0)) are clear.

The undular bores from the simulations, shown in figure 11(b,d, f ), show a
consistent trend. For each, ∆ is positive for b = 0 (z = H) and decreases with
increasing b (decreasing z). For each, there is a region where ∆ < 0 near b = 1,
corresponding to an energy gain in the expanding region of the bore, near z = 0.
There is also a region where ∆> 0 near b= 0, corresponding to an energy loss in the
contracting region of the bore, near z= 1. The results suggest a clear energy transfer
from the contracting to expanding regions for undular bores. None of the profiles
is linear in b, as the dissipation models postulate, although each is approximately
linear for intermediate isopycnal values. Moreover, the ε→−∞ model is arguably
the closest match as compared with the KRS and VS models, with the best fit lying
somewhere between ε =−1 and ε→−∞.
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FIGURE 11. Profiles of velocity U − Cb (first and third rows) and Bernoulli head
loss (second and fourth rows) normalized as ∆/∆max in isopycnal coordinates. Results
correspond to the undular and turbulent bores from figures 4 and 5, with r= 0.2, hd= 0.5
and 0.9, and λ= 4, 12 and 24, as indicated. In all plots, solid symbols are the numerical
results and lines are model predictions based on three different dissipation models for
comparison: continuous VS model, ε = 0 (solid line); continuous KRS model, ε = −1
(dashed line); and MD model, ε→−∞ (dash-dotted line).

The turbulent/monotonic bores from the simulations, shown in figure 11(h, j,l),
show a less coherent trend. The λ = 4 and 12 cases each have a distinct peak near
an intermediate isopycnal value, more likely associated with mixing at the interface.
The λ= 24 case shows a structure that is more similar to the undular bores, despite
the fact that it is a fully turbulent case, for which interfacial mixing is high. The
profiles of ∆ vary considerably with interface thickness and bore amplitude, and
in general are nonlinear in b. Nonetheless, the model for ε does not seem to have
a significant influence on the velocity structure. Recall that turbulent bores have
smaller net dissipation than undular bores, and that the dissipation decreases (see
figure 10) and the bore speed is less sensitive to ε (figure 6) as the conjugate state
is approached. It may be that the ε → −∞ model gives a better prediction of Cb
because it better captures the energy transfer from the contracting to the expanding
region for the higher-dissipation undular bores.
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FIGURE 12. Bore speed versus amplitude, R= hb/ha, for nearly two-layer case (λ= 64)
for (a) r= 0.1 and (b) r= 0.2. Comparison between numerical results (symbols) and the
two-layer theories (CBWS, KRS, VS, DVS, BMC and MD (6.1)) and finite interface (λ=
64) solution (see legend for details).

6. The two-layer limit: comparison with previous theories
The success of the model for continuous stratification suggests an improvement in

the two-layer limit as compared with the KRS, CBWS or VS models. The ε→−∞
model is a special limit of the two-layer theories that maximizes the total dissipation.
From (3.6) the bore speed in this limit, which we term the MD model, is given by

Cb

(g′H)1/2
=
[

rR2(2rR+ 2r− 2)(1− rR)2

6rR+ 2r2R3 − 6r2R2 − R− 1

]1/2

. (6.1)

Figure 12 shows this curve along with several of the previous two-layer predictions
plotted against the simulation results for λ= 64 (the thinnest ambient interface studied
here), for both r = 0.1 and r = 0.2. For comparison with existing two-layer theories,
the bore speed is renormalized as Ĉb = Cb/(g′ha)

1/2, which is more traditional in the
literature.

The two-layer theory (6.1) provides a good approximation. However, the continuous
(λ = 64) model, also shown, is clearly superior because it captures the effect of the
slightly thickened interface on the upstream waveguide. This effect reduces the bore
speed throughout the range of amplitudes, from the small-amplitude limit, where Cb→
co, to the large-amplitude limit, where Cb→Ccs.

We also compare the results with the Borden et al. (2012) and Borden & Meiburg
(2013b) BMC and DVS models that account for turbulent mixing on the downstream
interface. (For the DVS model we use the exponential fit for the interface thickness,
δ∗, given in figure 5 of Borden & Meiburg (2013b), and for the BMC model we
use the same value of the parameter f = C Pe−1/2 as Borden et al. (2012), i.e. f =
0.5(3500)−1/2.) Figure 12(a) can be compared directly with figure 5(b) from Borden
& Meiburg (2013b), although their simulations and theoretical curves extend only to
R ≈ 3. The BMC and DVS curves agree well with the simulation results and the
λ = 64 model up to R ≈ 3 for r = 0.1 and R ≈ 1.75 for r = 0.2. However, beyond
those intermediate bore amplitudes, both models quickly diverge from the simulation
results, and their predictive capability rapidly degrades relative to the other models.

The large-amplitude degradation of the BMC and DVS models raises an important
issue. Previous work on two-layer bores has not sufficiently emphasized the energy-
conserving conjugate state as the large-amplitude limit. This may in part be a result
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of the conventional scaling for amplitude, R = hb/ha, which obscures the fact that
the conjugate state occurs at the same amplitude, hb/H = 0.5, in the two-layer limit,
independent of r (whereas Rcs varies with r). Figure 12 shows that the KRS, CBWS
and VS models (and more generally the arbitrary ε model) all converge to the two-
layer conjugate-state solution at large amplitude, while the BMC and DVS models do
not. This limit is important because it is the limiting amplitude for nonlinear internal
waves, and an intrinsic property of the nonlinear waveguide. The continuous model
converges even more accurately to the conjugate state for the ambient stratification,
as it includes the effect of the small but finite pycnocline.

7. Discussion
Our results suggest that the waveguide established by the ambient stratification

controls both the bore speed and the shape of the front. The small-amplitude limit of
our continuous bore model is the linear equation governing normal modes, so that the
bore speed approaches the linear long-wave speed in that limit. For large amplitude,
the model, for all ε values, converges to the energy-conserving conjugate state, and
shows good agreement with the simulations in that limit. Moreover, the close match
between the observed speeds and structure of the bore front with nonlinear solitary
waves computed using the DJL equation further emphasizes the importance of the
nonlinear waveguide. While we have chosen to terminate the curves at the conjugate
state (since beyond it D< 0), some numerical simulations result in bores with larger
amplitudes. In these cases, the speeds are well approximated by the conjugate-state
speed, but a specific model does not exist. Previous results in two-layer systems
(Baines 1995; White & Helfrich 2012) suggest that rarefactions may exist in this
range.

The energy loss across the bore is complex, varying with both interface thickness
and bore amplitude. However, two conclusions might be drawn. First, it is common
for energy to be transferred to the lower denser layer from the upper regions (as
demonstrated by Borden et al. (2012)). Second, the dissipation appears to be greater
than predicted by the KRS or CBWS analogue models, and is more consistent with
the ε→−∞ model. This model maximizes the total dissipation, raising an interesting
question about whether it is that particular feature that leads to the close match with
the Navier–Stokes simulations. Most theories overpredict the bore speed, while the
ε→−∞ model both reduces the bore speed and seems to be the only model that
produces a monotonic approach to the conjugate state, a feature that is observed in
the DJL solitary-wave solutions.

We have demonstrated that our continuous model (as well as its two-layer limit)
converges to the energy-conserving conjugate-state solution. Previous work on two-
layer bores has not sufficiently emphasized this large-amplitude limit, and the fact that
the KRS, CBWS and Borden & Meiburg (2013b) VS models (and the more general
arbitrary ε model that we discuss) all converge to the same solution for D= 0. This
limit is an important feature, as it is the limiting amplitude for nonlinear internal
waves.

8. Conclusions
We have presented a model for the speed of an internal bore in continuous

stratification of arbitrary form. The model requires an assumption about dissipation,
and we have demonstrated a closure that consistently produces good agreement with
simulation results. Although a numerical solution is required, it can be carried out
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by straightforward numerical eigenvalue techniques. In addition to matching the front
speed from Navier–Stokes simulations, the model, by interpreting internal bores in
terms of the nonlinear internal waveguide for the ambient stratification, gives physical
insight into characteristics of the bore front. We hope this model will be of use for
field observations of internal bores and nonlinear internal waves.
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Appendix A
Here we formally derive the non-Boussinesq limit of (3.2) and (3.4). Bernoulli’s

equation applied along an arbitrary streamline between its ambient level, za = z − η,
and its level through the jump, z, and whose density is ρa(za), yields

1
2ρa(za)C2

b + ρa(za)g(z− η)+ pa(za) (A 1)

= 1
2ρa(za)U(z)2 + ρa(za)gz+ p(z)+∆(z), (A 2)

where ∆(z) is a depth-dependent head loss.
Differentiating (A 2) with respect to z yields

1
2

C2
b

dρa

dza
(1− ηz)+ dpa

dza
(1− ηz) = 1

2
C2

b
dρa

dza
(1− ηz)

3 − ρa(za)C2
b(1− ηz)ηzz

+ dρa

dza
η(1− ηz)+ ρa(za)

dη
dz
+ dp

dz
+∆z. (A 3)

Here we have used the conservation-of-mass relationship, U(z)=Cb(ηz− 1), and the
chain rule to write d/dz= (1− ηz) d/dza. Next we use the hydrostatic approximation
in both the ambient and through the jump, to write

dpa

dza
= dp

dz
=−ρa(za)g, (A 4)

and make use of the definition of the ambient Brunt–Väisälä frequency,

N2(za)=− g
ρa(za)

dρa

dza
. (A 5)

Substitution of (A 4) and (A 5) into (A 3) and straightforward algebra then yields

ηzz + N2(za)

2g
(η2

z − 2ηz)+ N2(za)

C2
b
η+ ∆z

ρa(za)C2
b(ηz − 1)

= 0, (A 6)

subject to the boundary conditions, η(0)=η(H)=0, which is the non-Boussinesq limit
of (3.2).

The equation for conservation of horizontal momentum over the control volume
encompassing the bore and the upstream ambient, (3.3), can be simplified to∫ H

0
[p(z)+ ρa(za)U2(z)− (pa(za)+ ρa(za)C2

b)(1− ηz)] dz= 0, (A 7)
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using the change of variable za = z− η and hence dza = (1− ηz) dz. From Bernoulli’s
equation (A 2), and conservation of mass, U(z)=Cb(ηz − 1),

pa(za)= p(z)+ 1
2ρa(za)C2

b((1− ηz)
2 − 1)+ ρa(za)gη+∆(z). (A 8)

Substituting into (A 7) gives∫ H

0

[
p(z)ηz + 1

2
ρa(za)C2

b(η
3
z − η2

z )− ρa(za)gη(1− ηz)−∆(1− ηz)

]
dz= 0. (A 9)

Further simplification can be achieved by term-by-term integration by parts using the
boundary conditions η(0)= η(H)= 0. First, the following two terms cancel,∫ H

0
[p(z)ηz − ρa(za)gη] dz=

∫ H

0
[(p(z)η)z − pzη] dz−

∫ H

0
ρa(za)gη dz= 0, (A 10)

where we have used the hydrostatic relation (A 4). Next, integrating by parts it can
be shown that∫ H

0
ρa(za)gηηz dz=−1

2

∫ H

0
gη2 dρa

dz
dz= 1

2

∫ H

0
ρa(za)η(1− ηz){ηN2(za)} dz. (A 11)

From the governing ODE (A 6), the bracketed term can be written as

ηN2(za)=−C2
bηzz − C2

bN2(za)

2g
(η2

z − 2ηz)− ∆z

ρa(za)(ηz − 1)
. (A 12)

Upon substitution into (A 11), integration by parts and algebraic simplification, (A 11)
is simplified to∫ H

0
ρa(za)gηηz dz=

∫ H

0

[
1
2
ρa(za)C2

b

(
1− 1

2
ηz

)
η2

z +
1
2
η∆z

]
dz. (A 13)

Substituting (A 13) together with (A 10) into (A 9) then gives∫ H

0

[
ρa(za)C2

bη
3
z −∆

(
1− 1

2
ηz

)]
dz= 0, (A 14)

where we have used the relation
∫ H

0 (η∆)z/2 dz = 0. Equation (A 14) is the non-
Boussinesq version of the momentum constraint (3.4).
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