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A class of simple kinetic systems is considered, described by the one-dimensional
Vlasov–Landau equation with Poisson or Boltzmann electrostatic response and an
energy source. Assuming a stochastic electric field, a solvable model is constructed
for the phase-space turbulence of the particle distribution. The model is a kinetic
analogue of the Kraichnan–Batchelor model of chaotic advection. The solution of the
model is found in Fourier–Hermite space and shows that the free-energy flux from
low to high Hermite moments is suppressed, with phase mixing cancelled on average
by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is
an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity
space). The full Fourier–Hermite spectrum is derived. Its asymptotics are m−3/2 at low
wavenumbers and high Hermite moments (m) and m−1/2k−2 at low Hermite moments
and high wavenumbers (k). These conclusions hold at wavenumbers below a certain
cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the
stochastic electric field and scales as inverse square of the collision rate. The energy
distribution and flows in phase space are a simple and, therefore, useful example
of competition between phase mixing and nonlinear dynamics in kinetic turbulence,
reminiscent of more realistic but more complicated multi-dimensional systems that
have not so far been amenable to complete analytical solution.

Key words: plasma nonlinear phenomena

1. Introduction
One of the most distinctive properties of a weakly collisional plasma as a

physical system is the intricate phase-space dynamics associated with the interaction
between electromagnetic fields and charged particles. The signature plasma-physics
phenomenon of Landau (1946) damping consists essentially in the removal of free
energy from an electromagnetic perturbation and its transfer ‘into phase space’, i.e.
into fine-scale structure of the perturbed distribution function in velocity space (‘phase
mixing’). It has long been realised that nonlinear effects can lead to Landau damping
shutting down, both for broad-spectrum fields and individual monochromatic waves
(Vedenov, Velikhov & Sagdeev 1962; Mazitov 1965; O’Neil 1965; Manheimer &
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Dupree 1968; Weiland 1992), or even to apparently damped perturbations coming
back from phase space, a phenomenon called ‘plasma echo’ (Gould, O’Neil &
Malmberg 1967; Malmberg et al. 1968). Fast-forwarding over several decades of
plasma-turbulence theory (see Krommes 2015 and Laval, Pesme & Adam 2016 for
review and references), the notion of ‘phase-space turbulence’, pioneered by Dupree
(1972), has, in the recent years, again become a popular object of study, treated
either, Dupree-style, in terms of formation of phase-space structures and their effect
on the transport properties of the plasma (Kosuga & Diamond 2011; Lesur, Diamond
& Kosuga 2014a,b; Kosuga et al. 2014, 2017) or in terms of a kinetic cascade
carrying free energy to collisional scales in velocity space (Watanabe & Sugama
2004; Schekochihin et al. 2008, 2009; Tatsuno et al. 2009; Plunk et al. 2010; Bañón
Navarro et al. 2011; Plunk & Tatsuno 2011; Teaca et al. 2012, 2016; Hatch et al.
2014; Kanekar 2015; Parker et al. 2016; Schekochihin et al. 2016; Servidio et al.
2017).

Within the latter strand, a direct precursor to the present study is the paper by
Schekochihin et al. (2016), who proposed, using electrostatic drift-kinetic turbulence
as a prototypical example of kinetic turbulence, that a key effect of nonlinearity
on phase-space dynamics would be an effective suppression of Landau damping
– meaning that the free-energy flux from small to large scales in velocity space
associated with stochastic echoes (‘anti-phase-mixing’, or ‘phase unmixing’) largely
cancels the phase-mixing flux (‘Landau damping’) from large to small scales. A
signature of this effect is a Hermite spectrum of free energy that is steeper for the
nonlinear, turbulent perturbations than for the linear, Landau-damped ones (seen in
numerical simulations of Watanabe & Sugama 2004, Hatch et al. 2014 and Parker
et al. 2016). As a result, the limit of vanishing collisionality ceases to be a singular
limit at long wavelengths (as it is in the linear regime; see, e.g. Kanekar et al. 2015)
and most of the entropy production occurs below the Larmor scale (i.e. outside the
drift-kinetic approximation).

While some theoretical predictions of Schekochihin et al. (2016) appear to have
found a degree of numerical backing (Parker et al. 2016), their theory of stochastic
echo was a qualitative one, relying on plausible scaling arguments, rather like the
theory of hydrodynamic turbulence mostly does to this day (Davidson 2004). In
addition to such arguments, understanding of fluid turbulence has benefited greatly
from the development of simplified solvable models, the most famous of which is the
‘passive-scalar’ model describing the behaviour of a scalar field chaotically advected
by an externally determined random flow (Kraichnan 1968, 1974, 1994; Falkovich,
Gawȩdzki & Vergassola 2001). Under certain assumptions about the nature of this
flow, it is possible to solve for the passive-scalar statistics analytically, leading to a
number of interesting and non-trivial predictions, some of which appear to carry over
qualitatively or even quantitatively to more realistic turbulent systems and all of which
have proved stimulating to turbulence theorists. In view of this experience, seeking a
maximally simplified but analytically solvable model appears to be worthwhile.

In this paper, we propose such a solvable model, based on the much-studied
one-dimensional (1-D) Vlasov–Poisson system. The phase space for this system is
two-dimensional (one spatial and one velocity coordinate). The particle distribution
function in a turbulent state can be described in terms of its Fourier–Hermite spectrum.
We show that, given a stochastic electric field, the only physically sensible solution
features zero net free-energy flux from low (‘fluid’) to high (‘kinetic’) Hermite
moments, meaning that the Landau damping is suppressed and the low moments are
energetically insulated from the rest of the phase space. The underlying mechanism
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of this suppression is the stochastic-echo effect. The resulting Hermite spectrum
is, asymptotically, m−3/2 at large Hermite orders m (compared to m−1/2 for linear
Landau damping; see Zocco & Schekochihin 2011 and Kanekar et al. 2015) and
so the limit of small collisionality is non-singular (collisional dissipation tends to
zero if the collision rate does). The corresponding Fourier spectrum of the low-m
Hermite moments is m−1/2k−2. Surveyed over the entire phase space, the phase-mixing
(Landau-damped) and anti-phase-mixing (echoing) components of the distribution
function have an interesting and not entirely trivial self-similar structure, which can
nevertheless be fully extracted analytically and bears some resemblance to what
is seen in various numerical simulations. A finite collision rate imposes a finite
wavenumber cutoff on this solution, which is the analogue of the Kolmogorov scale
for the Vlasov-kinetic turbulence.

The rest of the paper is organised as follows. In § 2, we describe a family of
plasma systems that can be reasonably modelled by the equations studied in this
paper (electron Langmuir turbulence, ion-acoustic turbulence, Zakharov turbulence). In
§ 3, we recast these equations in Fourier–Hermite space and introduce the formalism
within which the phase mixing and anti-phase-mixing can be studied explicitly
(this formalism is similar to one developed by Schekochihin et al. 2016, but with
minor adjustments). In § 4, we make the approximations required to render the
problem solvable and derive an equation for the Fourier–Hermite spectrum of the
distribution function. In § 5, we solve this equation, obtaining the results promised
above (a qualitative summary of this solution and an assessment of the effect of
finite collisionality on it are given in § 5.4; a quicker, but perhaps less mathematically
complete route to it than one pursued in the main text is described in appendix B).
Finally, results are summarised and limitations, implications, applications and future
directions discussed in § 6.

2. Models: Vlasov–Poisson system and its cousins

The standard Vlasov–Poisson system describes a plasma in the absence of magnetic
field. For each species (s= e electrons or s= i ions), the distribution function obeys
the Vlasov–Landau equation

∂fs

∂t
+ v · ∇fs − qs

ms
(∇φ) · ∂fs

∂v
=
(
∂fs

∂t

)
c

, (2.1)

where qs and ms are the charge and mass of the particles, the term in the right-hand
side is the collision operator and φ is the electrostatic potential, satisfying Poisson’s
equation

−∇2φ = 4π
∑

s

qs

∫
d3v δfs. (2.2)

We are formally splitting the distribution function into mean and perturbed parts,

fs = f0s(v)+ δfs(t, r, v), (2.3)

where f0s is spatially homogeneous and we assume that there is no mean electric field.
Only δfs enters the Poisson equation (2.2) because the plasma is neutral on average.
We do not require that δfs� f0s everywhere, although we do assume that any temporal
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evolution of the mean distribution is slow compared to that of the perturbation. We
take the mean distribution to be Maxwellian,

f0s = n0s

(πv2
ths)

3/2
e−|v|

2/v2
ths, (2.4)

where vths =√2Ts/ms is the thermal speed of the particles of species s and n0s and
Ts are their number density and temperature, respectively.

Several simplified models can be constructed, leading to mathematically similar sets
of equations.

2.1. Electron Vlasov–Poisson plasma
Assuming cold ions, or, equivalently, restricting our consideration to perturbations with
frequencies of the order of the electron plasma frequency,

ω∼ωpe =
√

4πe2n0e

me
, (2.5)

where −e ≡ qe, we may set δfi = 0. Further restricting our consideration to a single
spatial dimension, x, we have δfe = δfe(x, v). We may now introduce the following
reduced, non-dimensionalised fields and variables:

g(x, v)= vthe

n0e

∫
dvy dvzδfe, FM(v)= 1√

π
e−v

2
, v = vx

vthe
, ϕ =−eφ

Te
.

(2.6)

We may also non-dimensionalise tωpe→ t and x/
√

2 λDe→ x, where λDe= vthe/
√

2ωpe

is the electron Debye length. In this notation, the Vlasov–Poisson system becomes

∂g
∂t
+ v ∂g

∂x
+ vFM

∂ϕ

∂x
− 1

2
∂ϕ

∂x
∂g
∂v
=C[g], (2.7)

ϕ = α
∫

dv g+ χ, (2.8)

where −α is twice the inverse Laplacian operator, αk = 2/k2 in Fourier space. We
have added an ‘external’ potential χ to represent energy injection in an analytically
convenient fashion (it will also acquire concrete physical meaning in §§ 2.3 and 2.4).
Finally, we make a further simplification by using the Lenard & Bernstein (1958)
collision operator

C[g] = ν ∂
∂v

(
1
2
∂

∂v
+ v
)

g, (2.9)

with the proviso that it must be adjusted to conserve momentum and energy. This will
not be a problem as the collision frequency ν will always be assumed small and so
will only matter for the part of g that varies quickly with v.

Besides being interesting in itself, the 1-D Vlasov–Poisson system (2.7)–(2.8) is an
appealing minimal model that contains all the ingredients necessary for phase-space
turbulence featuring a competition between phase mixing and nonlinearity.
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2.2. Ion-acoustic turbulence
Another, mathematically similar, model describes electrostatic perturbations at low
frequencies, where it is ion kinetics that matter, namely,

ω∼ kvthi. (2.10)

Since me � mi and assuming Ti ∼ Te, the electrons’ velocities are (mi/me)
1/2 larger

than the ions’ and so the kinetic equation (2.1) for s= e becomes, on ion time scales,

v · ∇fe + e
me
(∇φ) · ∂fe

∂v
=
(
∂fe

∂t

)
c

. (2.11)

This is solved by the Maxwell–Boltzmann distribution

fe = n0e

(2πTe/me)3/2
exp

[
− 1

Te

(
me|v|2

2
− eφ

)]
. (2.12)

The electrons, therefore, have a Boltzmann response:

ne = n0eeeφ/Te ≈ n0e

(
1+ eφ

Te

)
, (2.13)

assuming eφ/Te � 1. If kλDe � 1, the Poisson equation (2.2) turns into the
quasineutrality constraint:

δni

n0i
= δne

n0e
= eφ

Te
, (2.14)

where the last equality follows from (2.13) and the ion density perturbation has to
be calculated from the perturbed ion distribution function, δni =

∫
d3v δfi. Restricting

consideration again to 1-D perturbations, δfi = δfi(x, v), and defining

g(x, v)= vthi

n0i

∫
dvy dvzδfi, FM(v)= 1√

π
e−v

2
, v = vx

vthi
, ϕ = Zeφ

Ti
,

(2.15)

where Ze≡ qi, we find that g again satisfies (2.7). Using (2.14) and again adding an
external forcing χ , we have

ϕ − χ = ZTe

Ti

δni

n0i
= ZTe

Ti

∫
dv g≡ α

∫
dv g. (2.16)

This is the same as (2.8), except now α=ZTe/Ti is a constant rather than a differential
operator.

Note that the spatial and temporal coordinates in (2.7) can now be normalised
x/L→ x and tvthi/L→ t with an entirely arbitrary scale L because the fundamental
dynamics described by the ion equations – (damped) sound waves – does not have a
special length scale.

2.3. Zakharov turbulence
Models allowing perturbations only on electron or only on ion scales are, in fact,
of limited relevance to real plasma turbulence because interactions of Langmuir
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waves will promote coupling to low-frequency modes at the ion scales while
those low-frequency modes will locally alter the plasma frequency, giving rise to a
‘modulational’ nonlinearity in the electron-scale dynamics. Such a ‘two-scale’ system
has been extensively studied, mostly using the so-called Zakharov (1972) equations,
or, to be precise, a version of them in which both the electron and ion densities obey
fluid-like equations (see reviews by Rudakov & Tsytovich 1978, Thornhill & ter Haar
1978, Goldman 1984, Zakharov, Musher & Rubenchik 1985, Musher, Rubenchik &
Zakharov 1995, Tsytovich 1995, Robinson 1997 and Kingsep 2004, of which the first
and the last are the most readable) For electrons, the fluid approximation requires
kλDe� 1 and for ions, Ti� Te, so neither electron nor ion Landau damping are then
important (because the phase velocities of the Langmuir and sound waves are much
greater than vthe and vthi, respectively).

In a traditional approach to plasma turbulence, turbulence is what occurs at the
scales (and in parameter regimes) where the dominant interactions are between wave
modes (e.g. Langmuir or sound), which conserve fluctuation energy and transfer
it, via a ‘cascade’, to scales where waves can interact with particles – usually via
Landau damping, linear and/or nonlinear. The latter processes are expected to lead
to absorption of the wave energy by particles, i.e. its conversion into heat. Thus,
regimes and scale ranges in which kinetic physics matters are viewed as dissipative
(analogous to viscous scales in hydrodynamic turbulence).

If one is not committed to such a dismissive attitude to kinetics in the way that a
turbulence theorist in search of a fluid model might be, one may wish to explore how
Zakharov’s turbulence interfaces with the phase space. While the fluid approximation
for electrons at long wavelengths (kλDe� 1) is sensible, the assumption of cold ions
and hence unfettered sound propagation is fairly restrictive, so one may wish to
remove it. It is then possible to derive a kinetic version of Zakharov’s equations (as
Zakharov 1972 in fact did), in which the ion kinetic equation stays intact [this is
(2.1) with s= i and qs= Ze], but the potential φ in this equation is the ion-time-scale
(∼1/kvthi) averaged potential – a kind of mean field against the background of
electron-time-scale Langmuir oscillations. This mean potential is determined from the
Poisson equation, which, since kλDe� 1, again takes the form of the quasineutrality
constraint (2.14), but the ion-time-scale electron-density perturbation now contains
both the Boltzmann response and the so-called ponderomotive one – essentially an
effective pressure due to the average energy density of the Langmuir oscillations:

δni

n0i
= δn̄e

n0e
= eφ̄

Te
− |E|2

8πn0eTe
, (2.17)

where overbars denote averages over the electron time scales and E is the electric
field associated with the Langmuir waves. The resulting ion equations are the same
as those derived in § 2.2, viz., the kinetic equation (2.7) with the definitions (2.15)
(but φ→ φ̄) and ϕ given by (2.16), or, equivalently, by (2.8), but with the ‘external’
forcing now having a concrete physical meaning:

χ = |E|2
8πn0iTi

. (2.18)

This forcing is, in fact, not independent of either ϕ or δfi, as E satisfies a ‘fluid’
equation for the Langmuir oscillations with the plasma frequency modulated by δn̄e
(see Zakharov 1972 or any of the reviews cited above; a systematic derivation of
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Zakharov’s equations from kinetics, which is surprisingly difficult to locate in the
literature, can be found in Schekochihin 2017).

Thus, yet again, we have a system of equations that is mathematically similar to
the 1-D Vlasov–Poisson system (2.7) and (2.8).

2.4. Stochastic-acceleration problem
A simpler problem than the three preceding ones is to consider a population of
‘test particles’, embedded in an externally imposed, statistically stationary stochastic
electric field E = −∇φ, and seek these particles’ distribution function. It satisfies
Vlasov’s equation (2.1), with collision integral now omitted. It can be restricted to
one dimension either by fiat or by considering particles in a magnetic field being
accelerated by fast electric fluctuations parallel to it. In the limit of the field E having
a short correlation time compared to the characteristic time for particles to become
trapped in the potential wells associated with E, the particles’ spatially averaged
distribution function is easily shown to satisfy a diffusion equation (Sturrock 1966):1

∂f0

∂t
=D

∂2f0

∂v2
, D= e2

m2

∫ ∞
0

dτ 〈E(t)E(t− τ)〉, (2.19)

where the electric-field correlation function should generally speaking be taken along
particles’ trajectories, but, in the limit of short correlation times, it is the same as the
Eulerian correlation function.

The solution of (2.19) (assuming an initial δ-shaped particle distribution) is a 1-
D Maxwellian with v2

th = 4Dt, expressing gradual secular heating of the test-particle
population. At long times, this evolution can be treated as slow compared to the
evolution of the perturbation δf and so the latter considered to evolve against the
background of a quasi-constant Maxwellian equilibrium. With the same normalisations
as in § 2.1, the perturbed distribution function again satisfies (2.7), but ϕ is now an
external field with prescribed statistical properties, entirely decoupled from g. This, of
course, corresponds to setting α = 0 in (2.8).

3. Formalism: phase mixing and anti-phase-mixing
The spectral formalism for handling phase-space turbulence that we will use here

was developed, for a different problem, by Schekochihin et al. (2016) (see also
Kanekar et al. 2015, Parker & Dellar 2015), but there are enough minor differences
with this work to justify a detailed recapitulation. However, a reader already familiar
with this material might save time by fast forwarding to (3.33) and then working her
way backwards whenever anything appears unclear.

3.1. Hermite moments: waves and phase mixing
We will work in the Fourier–Hermite space, decomposing the perturbed distribution
as follows

g(x, v)=
∑

k

eikx
∑

m

Hm(v)FM(v)√
2mm! gk,m, gk,m =

∫
dx

2πL
e−ikx

∫
dv

Hm(v)√
2mm! g(x, v),

(3.1)
1This is done entirely analogously to the calculation in § 4.1, where the white-noise model for ϕ is

introduced and used (cf. Cook 1978).
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where L is the system size. The Hermite polynomials

Hm(v)= (−1)mev
2 dm

dvm
e−v

2
,

∫
dvHm(v)Hn(v)FM(v)= 2mm! δmn, (3.2)

form a convenient orthogonal basis for handling 1-D perturbations to a Maxwellian.
It is in anticipation of the Hermite decomposition that the Lenard–Bernstein collision
operator (2.9) was chosen, as the Hermite polynomials are its eigenfunctions:

C[gk,m] =−νmgk,m. (3.3)

To enforce momentum and energy conservation, we overrule this with C[gk,1] = 0 and
C[gk,2] = 0.

Using the identities

vHm = 1
2

Hm+1 +mHm−1,
dHm

dv
= 2mHm−1, (3.4)

denoting the particle density, flow velocity and temperature by

nk = gk,0, uk =
∫

dv vgk(v)= gk,1√
2
, Tk =

√
2 gk,2, (3.5)

and noticing that (2.8) then amounts to

ϕk = αknk + χk, (3.6)

we arrive at the following spectral representation of (2.7):

∂nk

∂t
+ ikuk = 0, (3.7)

∂uk

∂t
+ ik

(
Tk

2
+ 1+ αk

2
nk

)
+ 1

2

∑
p

ipϕpnk−p =− ikχk

2
, (3.8)

∂Tk

∂t
+ ik

(√
3 gk,3 + 2uk

)
+ 2

∑
p

ipϕpuk−p = 0, (3.9)

∂gk,m

∂t
+ ik

(√
m+ 1

2
gk,m+1 +

√
m
2

gk,m−1

)
+
√

m
2

∑
p

ipϕpgk−p,m−1 =−νmgk,m,

(3.10)

the last equation describing all m > 3.
In the absence of sources, nonlinearities and heat fluxes (gk,3 = 0), (3.7)–(3.9)

describe 1-D hydrodynamics of plasma waves (Langmuir waves for the electron
model and ion-acoustic waves for the ion one). This becomes particularly obvious if
we work in terms of the linear eigenfunctions

n±k = nk ± k
ωk

uk, ωk = k

√
3+ αk

2
, (3.11)
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denote θk = Tk − 2nk (the non-adiabatic part of the temperature) and recast (3.7)–(3.9)
as follows

∂n±k
∂t
± iωkn±k =∓

ik
2ωk

[
k(χk + θk)+

∑
p

pϕpnk−p

]
, (3.12)

∂θk

∂t
=−ik

√
3 gk,3 − 2

∑
p

ipϕpuk−p. (3.13)

At any given k, the fluctuating fields n±k oscillate at frequency ωk (the Langmuir
frequency or the ion sound frequency), with their energy injected by the forcing
χk. The nonlinear term, which, since ϕp = αpnp + χp, includes both self-interaction
and advection by the external potential χp, can, in general, transfer wave energy to
different wavenumbers, drain it or inject it. The term containing θk connects the wave
dynamics to the entire hierarchy of higher Hermite moments, which evolve according
to (3.10).

In a linear system, the latter effect would give rise to Landau damping: the
coupling of lower-order Hermite moments to higher-order ones that appears in the
second term on the left-hand side of (3.10) ‘phase mixes’ perturbations to ever higher
m’s which represents emergence of ever finer structure in velocity space (at large
m, the Hermite transform is effectively similar to a Fourier transform in v, with
‘frequency’

√
2m, so moments of order m represent velocity-space structures with

scale δv ∼ π/
√

m). Eventually this activates collisions, however small their frequency
ν might be, and the dynamics becomes irreversible. In the presence of nonlinearity,
the situation is more complicated, with the last term on the left-hand side of (3.10)
causing a kind of advection of higher Hermite moments by the wave field ϕk. This
gives rise to filamentation of the distribution function not just in velocity but also in
position space (O’Neil 1965; Manheimer 1971; Dupree 1972). The resulting coupling
between different wavenumbers can trigger plasma echoes (Gould et al. 1967), or
anti-phase-mixing, leading to cancellation, on average, of the Landau damping (Parker
& Dellar 2015; Parker et al. 2016; Schekochihin et al. 2016). It is with the latter
phenomenon that we will be concerned in what follows, as we seek to characterise
both spatial and velocity structure of the distribution function in terms of its k and
m spectra.

3.2. Energy fluxes
We can define the energy spectrum of our waves to be

Wk = 3+ αk

2

〈|nk|2
〉+ 〈|uk|2

〉= ω2
k

2k2

〈|n+k |2 + |n−k |2〉 . (3.14)

Using (3.12), we find that it evolves according to

∂Wk

∂t
= k Im

〈
χku∗k

〉+ k Im
〈
θku∗k

〉+∑
p

p Im
〈
ϕpnk−pu∗k

〉
. (3.15)

The first term on the right-hand side is the energy injection, the last term involves
interactions between waves (it does not in general integrate to zero because waves can
exchange energy, nonlinearly, with particles), whereas the second term is responsible
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for energy removal via phase mixing. We can see how this is picked up by higher
Hermite moments if we define the Fourier–Hermite spectrum and Hermite flux2

Ck,m = 1
2

〈|gk,m|2
〉
, Γk,m = k

√
m+ 1

2
Im
〈
g∗k,m+1gk,m

〉
(3.16)

and deduce from (3.10) the evolution equation for the spectrum:

∂Ck,m

∂t
+ Γk,m − Γk,m−1 + 2νmCk,m =

√
m
2

∑
p

p Im
〈
ϕpgk−p,m−1g∗k,m

〉
. (3.17)

The phase-mixing term in (3.15) is

k Im〈θku∗k〉 = k
[
Im
〈
gk,2g∗k,1

〉− 2
〈
nku∗k

〉]=−Γk,1 + ∂

∂t

〈|nk|2
〉

(3.18)

(the sloshing about of the fluctuation energy associated with the wave motion,
represented by the time derivative, averages out in the statistical steady state). The
Hermite flux in (3.17) passes energy along to higher m’s until the collision term
is large enough to erase it. Our strategy will be to work out a universal form for
Γk,m in a turbulent plasma at high m. Ideally, one would deduce from that what Γk,1
is, on average. In practice, we shall be able to predict that if one keeps a certain
unspecified order-unity number m of Hermite moments (‘order-unity’ meaning finite
and independent of collisionality, however small the latter is), the energy flux Γk,m
from/to these moments to/from the rest of phase space is zero in a certain ‘inertial’
range of wave numbers k.

3.3. High-m dynamics
Let us focus on the dynamics at m� 1, deep in phase space (one might think of this
as the ‘inertial range’ of phase-space turbulence). If

pϕp� k,
ωk

k
=
√

3+ αk

2
�√m, (3.19)

then, to lowest order in 1/
√

m, (3.10) gives us simply

gk,m+1 ≈−gk,m−1. (3.20)

This implies
gk,m+1 ≈±igk,m, (3.21)

i.e. imgk,m is either continuous or sign alternating. When k> 0, these two possibilities
correspond to phase-mixing and anti-phase-mixing modes, respectively, and vice versa
for k< 0 (Kanekar et al. 2015; Parker & Dellar 2015; Schekochihin et al. 2016). Let
us separate these two cases explicitly.

In view of (3.20), the function

Gk,m = imgk,m + im+1gk,m+1

2
(3.22)

2Note the extra factor of 1/2 used here compared to the analogous quantities in Schekochihin et al. (2016)
and the typo (a missing minus sign) in the last expression for Γm in their (3.19).
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will be approximately continuous in m: indeed,

Gk,m −Gk,m−1 = im+1

2
(gk,m+1 + gk,m−1)≈ 0. (3.23)

Therefore, it is legitimate to treat m as a continuous variable and approximate

Gk,m+1 ≈Gk,m + ∂Gk,m

∂m
, Gk,m−1 ≈Gk,m − ∂Gk,m

∂m
, etc. (3.24)

treating the derivative terms as small. Using this approximation, we can cast (3.10) in
the following approximate form, valid to lowest order in 1/

√
m,

∂Gk,m

∂t
+√2 k m1/4 ∂

∂m
m1/4Gk,m + νmGk,m =

√
m
2

∑
p

pϕpGk−p,m. (3.25)

Finally, if we define
f̃k(s)=m1/4Gk,m, s=√m, (3.26)

(3.25) becomes
∂ f̃k

∂t
+ k√

2

∂ f̃k

∂s
+ νs2 f̃k = s√

2

∑
p

pϕp f̃k−p. (3.27)

This is very similar to (3.12) of Schekochihin et al. (2016) and we have kept their
notation for a faithful reader’s convenience.3 It is manifest in (3.27) that when
k> 0, f̃k propagates to higher s (phase mixes) and when k< 0, it propagates to lower
s (anti-phase-mixes) and that the coupling between wavenumbers in the nonlinear
term can turn phase-mixing perturbations into anti-phase-mixing ones and vice versa.

The distribution function itself can be reconstructed from f̃k, or, equivalently, from
Gk,m, as follows4

gk,m = (−i)mGk,m + imG∗−k,m. (3.28)

The fact that, for any given k, both Gk,m and G−k,m are necessary to reconstruct
gk,m reflects the presence of both phase-mixing and anti-phase-mixing modes in any
distribution function. Maintaining a solution of (3.27) with no anti-phase-mixing, viz.,
f̃k = 0 for all k< 0, is clearly only possible in the absence of the nonlinearity.

Finally, if we define

Fk =
〈| f̃k|2

〉=√m
〈|Gk,m|2

〉
, (3.29)

3Schekochihin et al. (2016) constructed the function f̃k by first separating gk,m into phase-mixing and
anti-phase-mixing modes, g±k,m, then splicing those together into f̃k , with positive k corresponding to g+k,m and

negative k to g−k,m. The equivalence of this approach to the shorter route via Gk,m defined in (3.22) was
pointed out to us by W. Dorland. Note that (3.27) is almost exactly the equation that we would have obtained
by Fourier transforming the kinetic equation (2.7) in both x and v, with

√
2 s in the role of the dual variable

to v (cf. Knorr 1977), but we prefer the Hermite-transform approach.
4Note that, whereas gk,m, being a Fourier transform of a real function, must satisfy g∗−k,m = gk,m, neither

Gk,m nor f̃k are subject to any such constraint and indeed one can show that f̃ ∗−k = f̃k only in the absence of
phase mixing (Schekochihin et al. 2016).
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12 T. Adkins and A. A. Schekochihin

both the Fourier–Hermite spectrum Ck,m and the Hermite flux Γk,m, defined in (3.16),
can be reconstructed from Fk:

Ck,m ≈ Ck,m +Ck,m+1

2
=
〈|Gk,m|2 + |G−k,m|2

〉
2

= Fk + F−k

2
√

m
, (3.30)

Γk,m = k

√
m+ 1

2

〈|Gk,m|2 − |G−k,m|2
〉≈ k√

2
(Fk − F−k) . (3.31)

The derivation of these relations relies on (3.28) and on noticing also that

igk,m+1 = (−i)mGk,m − imG∗−k,m. (3.32)

Thus, the Fourier–Hermite spectrum is the average of the spectra of the phase-mixing
and anti-phase-mixing modes and the Hermite flux is their difference. It remains to
solve for Fk, which, using (3.27), is immediately found to satisfy

∂Fk

∂t
+ k√

2

∂Fk

∂s
+ 2νs2Fk = s

√
2 Re

∑
p

p
〈
ϕp f̃k−p f̃ ∗k

〉
. (3.33)

This equation, which is an approximate continuous version of (3.17), is not closed and
so we will need a plausible method for handling its right-hand side.

4. Method: Kraichnan–Batchelor limit
4.1. Kraichnan–Kazantsev model

We shall be brutal and obtain a closure for the right-hand side of (3.33) by modelling
ϕp as a random Gaussian white-noise (short-time-correlated) field,5〈

ϕp(t)ϕp′(t′)
〉= 2~pδp,−p′δ(t− t′). (4.1)

This assumption, pioneered by Kraichnan (1968) (for the passive-scalar problem)
and Kazantsev (1968) (for the turbulent-dynamo problem) is of course quantitatively
wrong, but there is a long and encouraging history in fluid dynamics and magneto-
hydrodynamics of the resulting closure leading to results that are basically correct
(e.g. Kraichnan 1974, 1994; Zeldovich, Ruzmaikin & Sokoloff 1990; Krommes
1997; Falkovich et al. 2001; Boldyrev & Cattaneo 2004; Schekochihin et al.
2004a; Schekochihin, Haynes & Cowley 2004b; Schekochihin et al. 2007; Bhat
& Subramanian 2015). In the present context, what we are doing formally amounts
to ignoring the contribution of the density nk = gk,0 to ϕk in (3.6) and stipulating
the statistics (4.1) for the external forcing χk. Physically, we are assuming that the
advecting stochastic electric field can be treated as statistically independent of the
phase-space structure of the distribution function. A reader unconvinced that this
can ever be a valid approximation for any aspect of the Vlasov problem with a

5The potential usefulness of this model for the Vlasov equation appears to have been first recognised in an
elegant paper by Cook (1978), who derived some relevant equations, discussed their relationship to various other
approaches that were being tried in the 1960s and 70s, and promised solutions, but did not, it seems, follow
up. We note that Orszag & Kraichnan (1967) appear to have been the first to pose phase-space correlations
of δf in a Vlasov plasma with a stochastic electric field as a worthwhile problem, substantially influencing
the field, without, however, providing solutions.
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self-consistent electric field, might find comfort in considering the calculations that
follow to apply solely to the stochastic-acceleration problem, where ϕ = χ (§ 2.4).

For a Gaussian field, by the theorem of Furutsu (1963) and Novikov (1965),

〈
ϕp f̃k−p f̃ ∗k

〉
(t)=

∫ t

dt′
∑

p′

〈
ϕp(t)ϕp′(t′)

〉 〈δ[ f̃k−p(t)f̃ ∗k (t)]
δϕp′(t′)

〉
. (4.2)

Using (3.27) to write an evolution equation for f̃k−p(t)f̃ ∗k (t) and then formally
integrating it over time, we find

f̃k−p(t)f̃ ∗k (t) =
∫ t

dt′′
{
− k√

2
f̃k−p

∂ f̃ ∗k
∂s
− k− p√

2
f̃ ∗k

f̃k−p

∂s
− 2νs2 f̃k−p f̃ ∗k

+ s√
2

∑
p′′

p′′
[
ϕp′′ f̃k−p−p′′ f̃ ∗k + ϕ−p′′ f̃ ∗k−p′′ f̃k−p

]}
(t′′). (4.3)

Therefore, its functional derivative is〈
δ[f̃k−p(t)f̃ ∗k (t)]
δϕp′(t′)

〉
= s√

2
p′
[〈

f̃k−p−p′(t′)f̃ ∗k (t
′)
〉
−
〈

f̃ ∗k+p′(t
′)f̃k−p(t′)

〉
+ · · ·

]
H(t− t′),

(4.4)

where H(t − t′) is the Heaviside function, expressing the fact that, by causality, f̃ (t)
cannot depend on ϕ(t′) at a future time t′ > t, and ‘· · · ’ stands for terms that vanish
when t′ = t. Substituting (4.1) and (4.4) into (4.2) gives

〈
ϕp f̃k−p f̃ ∗k

〉=− s√
2

p~p
(
Fk − Fk−p

)
. (4.5)

Finally, using this in (3.33), we get

∂Fk

∂t
+ k√

2

∂Fk

∂s
+ 2νs2Fk = s2

∑
p

p2~p
(
Fk−p − Fk

)
. (4.6)

The Fk term on the right-hand side is an additional, ‘turbulent’ collisionality (turbulent
diffusion in velocity space); the Fk−p term is the mode-coupling term responsible for
moving energy around and for converting phase-mixing modes into anti-phase-mixing
ones or vice versa.

In steady state, ∂Fk/∂t= 0 and (4.6) can be recast in an even simpler form: dividing
through by 2s2, we arrive at

k
∂Fk

∂τ
+ νFk = 1

2

∑
p

p2~p
(
Fk−p − Fk

)
, τ ≡ (

√
2 s)3

3
= (2m)3/2

3
. (4.7)
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14 T. Adkins and A. A. Schekochihin

4.2. Energy budget and collisions
It is an important property of the Kraichnan–Kazantsev model applied to our problem
that, in (4.6), the nonlinear interactions disappear under summation over all k and so
the total ‘energy’ of the f̃ field has a conservation law:

d
dt

∫ ∞
s0

ds
∑

k

Fk = 1√
2

∑
k

kFk(s0)− 2ν
∫ ∞

s0

ds s2
∑

k

Fk, (4.8)

where s0 is some suitably chosen lower cutoff and the energy balance is between
the flux through that cutoff (from or towards the waves at low m) and collisional
dissipation. Restating this in the steady state and with the τ variable (4.7),∫ +∞

−∞
dk kFk(τ0)= ν

∫ ∞
τ0

dτ
∫ +∞
−∞

dkFk(τ ). (4.9)

This energy balance admits two distinct physical scenarios.
One is essentially similar to what happens in the absence of nonlinearity (~p = 0):

in the limit of small ν, the spectrum Fk is independent of τ (or of s, or of m), giving
us the shallow Ck,m ∝ 1/

√
m slope associated with a Landau-damped solution (Zocco

& Schekochihin 2011; Kanekar et al. 2015). Collisions become important at τ ∼ ν−1

[see (4.7)] and so the dissipation term in the right-hand side of (4.9) is finite and
independent of collisionality as ν→+0. This in turn implies that the integral in left-
hand side of (4.9) must be finite and non-zero (in the linear regime, Fk<0 = 0, so
the integral is always positive and will be finite as long as the wavenumber spectrum
decays fast enough).

The second scenario arises from any Hermite spectral slope that makes Fk(τ ) decay
with τ . Then the collisional dissipation vanishes as ν→+0, i.e. the limit of vanishing
collisionality is non-singular in this sense, giving us license simply to set ν=0 in (4.7)
and expect to find a legitimate solution. The solution is indeed a legitimate steady-
state solution if the integral in the left-hand side of (4.9) vanishes for it, i.e. if the
overall energy flux into Hermite space is zero:∫ +∞

−∞
dk kFk(τ0)=

∫ +∞
0

dk k
[
Fk(τ0)− F−k(τ0)

]= ∫ +∞
0

dk
√

2Γk,m0 = 0, (4.10)

although there is no a priori requirement that the Hermite flux must vanish at every
k. We shall see that this is exactly the state that emerges in the nonlinear regime.

4.3. Batchelor limit
While (4.7) is a closed and compact equation, it is an integral one and not necessarily
easily amenable to analytical solution. We are going to make a further simplification
by assuming that p2~p decays sufficiently steeply with p that it is meaningful to
consider Fk at |k| � p, an approach pioneered by Batchelor (1959) in the context of
passive-scalar mixing (with the more quantitative theory due to Kraichnan 1974). We
can then expand under the wavenumber sum in (4.7):

Fk−p − Fk ≈−p
∂Fk

∂k
+ 1

2
p2 ∂

2Fk

∂k2
. (4.11)
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Having noticed that the first term vanishes under summation because it is odd in p
while ~p = ~−p, we obtain a rather simple differential equation:

k
∂Fk

∂τ
+ νFk = γ ∂

2Fk

∂k2
, γ ≡ 1

4

∑
p

p4~p. (4.12)

The wavenumber diffusion rate γ can easily be scaled out.
It turns out (see appendix A) that p2~p must decay more steeply than p−2 at the

very least, in order for this approximation to make sense, although it would have
to be steeper than p−3 in order for the p integral that determines γ in (4.12) to
converge without the need for a high-p cutoff. In what follows, we shall effectively
assume the advecting electric field to be single scale, with ~p concentrated around
some characteristic wavenumber p.

Equation (4.12) makes it clear how the nonlinearity causes anti-phase-mixing. At
k > 0, the steady-state equation (4.12) can be thought of as a diffusion equation in
k (or, to be precise, in |k|3/2; see § 5.1), with τ playing the role of time. At k < 0,
this ‘time’ reverses, i.e. diffusion turns into anti-diffusion. Whatever energy resides
at any given k > 0 and low τ will, as τ increases, spread over the k space. Some
of it can spread towards k = 0, where it crosses into the k < 0 territory (the rules
of this crossing are established in § 4.4) and diffuses back towards large (negative) k
and low τ . This creates an anti-phase-mixing energy flux, which can (and will) cancel
the phase-mixing flux. Collisions limit the values of τ (and of k) available to these
phase-space flows. We shall discuss their role more quantitatively in § 5.4, after we
have the exact collisionless solution in hand.

4.4. Boundary conditions: continuity in k space
We would like to be able to treat the solution of (4.7) in the region of low
|k| ∼ p, where the Batchelor approximation is not valid, as a continuous extension of
the solution of (4.12). In other words, we wish to prove that we can simply solve
(4.12) with the boundary conditions

Fk→+0 = Fk→−0,
∂Fk

∂k

∣∣∣∣
k→+0

= ∂Fk

∂k

∣∣∣∣
k→−0

, (4.13)

where k→±0 really means k→±p.
The continuity of Fk across k=0 and all the way to |k|�p (i.e. to the wavenumbers

where the Batchelor approximation holds) can be inferred from (4.7) as follows. Let us
ignore collisions and consider sufficiently small k (and/or sufficiently large τ ) so that
the phase-mixing term is small compared to the nonlinear term: from (4.12), this is
true for |k|� (γ τ)1/3, which can be satisfied already at |k|� p, at least for τ� p3/γ .
Then (4.7) reduces to

∑
p

p2~pFk−p =
(∑

p

p2~p

)
Fk. (4.14)

If we denote p2~p = Kp, assume that the width of this function is smaller than the
range of k in which (4.14) is valid (unlike in appendix A, where the validity of this
approach is probed), turn sums in (4.14) into integrals and Fourier transform (4.14),
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denoting the dual variable by x, and endowing the transformed functions with hats,
we get

K̂(x)F̂(x)= K̂(0)F̂(x). (4.15)

The solution of this equation is F̂(x) ∝ δ(x). Therefore, Fk is independent of k in a
range of k surrounding 0, with characteristic width ∼ p, the typical wavenumber of
the advecting field ϕ.

The second of the relations (4.13) (the continuity of the derivative) follows from the
requirement that there can be no total energy flux in or out of k = 0 (because Ck,m

must be even in k by the reality condition). Therefore, from (3.30),

∂

∂k
(Fk + F−k)

∣∣∣∣
k→+0

= 0 ⇒ ∂Fk

∂k

∣∣∣∣
k→+0

=− ∂F−k

∂k

∣∣∣∣
k→+0

= ∂Fk

∂k

∣∣∣∣
k→−0

. (4.16)

5. Solution: universal self-similar phase-space spectrum

Although we are about to entertain ourselves and the reader with an exact solution
of (4.12), the morphology of this solution is, in fact, not hard to grasp already by a
cursory examination of the equation. We will discuss it post hoc, in § 5.4. A reader
with no time for mathematical niceties can start from there and leaf back as necessary.

5.1. Plan of solution
If, as we promised in § 4.2, we are going to discover that phase mixing is substantially
or fully suppressed, we must be able find such a solution from (4.12) with ν = 0.
Note that the τ variable can now be shifted arbitrarily and so we can choose τ = 0 to
correspond to any true value of m – so let τ − τ0→ τ , where τ0 is the lower cutoff
introduced in § 4.2. Physically, the limit τ → 0 corresponds to going back from the
depths of phase space to low m’s, where the approximations that led to (3.27) break
down.

With these further simplifications, equation (4.12) turns into a type of diffusion
equation at k> 0 and anti-diffusion at k< 0. Namely, letting

Fk =
{

F+(ξ), k> 0
F−(ξ), k< 0, ξ ≡ 2

3
√
γ
|k|3/2, (5.1)

we find that F± satisfies

± ∂F±

∂τ
= 1
ξ 1/3

∂

∂ξ
ξ 1/3 ∂F±

∂ξ
. (5.2)

The ‘+’ version of this equation belongs to a class studied exhaustively by Sutton
(1943), who derived its Green’s functions for all standard initial and boundary-value
problems. Armed with these, we are going to construct the full solution in the
following way.

(i) First postulate an ‘initial’ condition and a boundary condition for F+ and find
the Green’s-function solution for F+(τ , ξ):

F+(τ→ 0, ξ)= F+0 (ξ),
F+(τ , ξ→ 0)= Y(τ ),

}
⇒ F+(τ , ξ), (5.3)
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where F+0 (ξ) and Y(τ ) are some unknown functions. Obviously, as we are not
interested in spectra that blow up at small scales, F+ must vanish at ξ→∞ and the
same will be required of F−.

(ii) Since we must have continuity, F+(τ , ξ → 0) = F−(τ , ξ → 0) [see (4.13)],
F−(τ , ξ) is found as a Green’s-function solution with an unknown value Y(τ ) on
the boundary. Since the equation for F− is an anti-diffusion equation, the ‘initial’
condition for it must be set at large τ and since there can be no energy at τ →∞,
this ‘initial’ condition is zero. Formally, this can be implemented by choosing some
cutoff τmax, requiring the function to vanish there, solving, and then taking τmax→∞.
The validity of this operation will be confirmed by the finiteness of the result. Thus,

F−(τ , ξ→ 0)= Y(τ ),
F−(τ→ τmax, ξ)= 0,

}
⇒ F−(τ , ξ), τmax→∞. (5.4)

Operationally, the solution can be accomplished by changing variables to τ ′= τmax− τ ,
so the anti-diffusion equation turns into a diffusion one. Physically, τmax ∼ 1/ν.

(iii) The unknown function Y(τ ) is now determined by the continuity of the energy
flux across k= 0 [see (4.13)]. Since ∂Fk/∂k=±ξ 1/3∂F±/∂ξ ,

ξ 1/3 ∂F+

∂ξ

∣∣∣∣
ξ→0

=−ξ 1/3 ∂F−

∂ξ

∣∣∣∣
ξ→0

⇒ Y(τ ). (5.5)

A key physical constraint is that Y(τ ) should be a decreasing function, otherwise the
assumption that the collisional dissipation is inessential would have to be abandoned.

(iv) At this point, we are in possession of the full solution, subject to the unknown
function F+0 (ξ). We may now use this solution to determine

F−0 (ξ)= F−(τ→ 0, ξ). (5.6)

The net Hermite flux (3.31) at τ → 0, i.e. from low Hermite moments to high ones,
is proportional to F+0 − F−0 . We will show that there is a solution for which

F+0 − F−0 = 0 (5.7)

and that this solution is the only physically sound one. Thus, the outcome of this
procedure will be a universal structure of the Fourier–Hermite spectrum Fk(τ ) in
steady state. An impatient reader can skip what follows to find this spectrum in
§ 5.3.2 (xe will also find a shorter, more elementary, if perhaps less general, route to
this solution in appendix B).

5.2. Green’s function solution
5.2.1. The ‘+’ solution

The solution of the ‘+’ equation (5.2) satisfying the initial and boundary conditions
(5.3) is

F+(τ , ξ) = ξ 1/3e−ξ2/4τ

2τ

∫ ∞
0

dη η2/3e−η
2/4τ I1/3

(
ξη

2τ

)
F+0 (η)

+
(

1
2ξ
)2/3

Γ
(

1
3

) ∫ τ

0
dσ

e−ξ2/4(τ−σ)

(τ − σ)4/3 Y(σ ), (5.8)
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where I1/3 is a modified Bessel function of the first kind. The first term in (5.8) is
responsible for satisfying the initial condition and is zero at ξ→ 0, the second term
is equal to zero at τ→ 0 and to Y(τ ) at ξ→ 0.

The associated energy flux at ξ→ 0 is

ξ 1/3 ∂F+

∂ξ

∣∣∣∣
ξ→0

(τ )= 21/3

Γ
(

1
3

) [ 1
τ 1/3

∫ ∞
0

dz e−zF+0 (2
√
τ z)− d

dτ

∫ τ

0
dσ

Y(σ )
(τ − σ)1/3

]
. (5.9)

The first term is obtained by expanding

I1/3

(
ξη

2τ

)
= 1
Γ
(

4
3

) (ξη
4τ

)1/3

+ · · · , (5.10)

under the integral, mopping up powers of ξ , then taking ξ→ 0, and, finally, changing
the integration variable to z= y2/4τ . The second term in (5.9) takes some work – the
derivation can be found in Sutton (1943) (his equation 7.4).6

5.2.2. The ‘−’ solution
To obtain the solution of the ‘−’ equation (5.2), let τ ′ = τmax − τ and solve

∂F±

∂τ ′
= 1
ξ 1/3

∂

∂ξ
ξ 1/3 ∂F±

∂ξ
(5.11)

subject to the boundary and initial conditions (5.4), which become, with the new
variable,

F−(τ ′, ξ→ 0)= Y(τmax − τ ′),
F−(τ ′→ 0, ξ)= 0.

}
(5.12)

The solution is the same as (5.8), but with F+0 replaced by 0, τ by τ ′ and Y(σ ) by
Y(τmax−σ). Changing the integration variable τmax−σ→σ and restoring τ ′= τmax− τ ,
we get

F−(τ , ξ)=
(

1
2ξ
)2/3

Γ
(

1
3

) ∫ τmax

τ

dσ
e−ξ2/4(σ−τ)

(σ − τ)4/3 Y(σ ). (5.13)

Note that taking τmax →∞ produces no anomalies, assuming Y(σ ) does not grow
(which would not be physical anyway as even with linear Landau damping, Y= const).

The flux associated with this solution at ξ→ 0 is found from F−(τ ′, ξ) by the same
procedure as the second term in (5.9), followed by the same changes of variables as
described above. The result is

ξ 1/3 ∂F−

∂ξ

∣∣∣∣
ξ→0

(τ )= 21/3

Γ
(

1
3

) d
dτ

∫ τmax

τ

dσ
Y(σ )

(σ − τ)1/3 . (5.14)

Note that we should not rush into taking τmax→∞ here before we take the derivative
as the integral may well (and indeed will) prove divergent.

6The flux has to be manipulated into this form because simply taking ξ = 0 in the second integral in (5.9)
leads to a potentially divergent integral. The idea of the derivation is first to replace Y(σ )=[Y(σ )−Y(τ )]+Y(τ )
under the integral, do the integral multiplying Y(τ ) exactly before taking ξ→ 0, whereas in the integral involving
Y(σ )− Y(τ ) ensure convergence in the limit ξ→ 0 by assuming sufficient regularity of the function Y . A few
integrations by parts later, (5.9) results.
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5.2.3. Continuity of energy flux
Using (5.9) and (5.14), the condition (5.5) becomes

d
dτ

[∫ τ

0
dσ

Y(σ )
(τ − σ)1/3 −

∫ τmax

τ

dσ
Y(σ )

(σ − τ)1/3
]
= 1
τ 1/3

∫ ∞
0

dz e−zF+0 (2
√
τ z). (5.15)

This is an integral equation for Y(τ ) in terms of the unknown function F+0 (or vice
versa), but solving it directly is a thankless pursuit. We will cut to the chase and seek
a particular solution for which the Hermite flux at τ→ 0 vanishes.

5.3. Zero-flux solution
From (5.13), we can deduce the spectrum of anti-phase-mixing modes at τ→ 0:

F−0 (ξ)=
(

1
2ξ
)2/3

Γ
(

1
3

) ∫ τmax

τ

dσ
e−ξ2/4σ

σ 4/3
Y(σ ). (5.16)

Let us explicitly look for such a solution that F−0 (ξ)=F+0 (ξ). We may then substitute
the expression (5.16) for F+0 in (5.15) and thus obtain an equation for what Y(τ )
would have to be in order for the zero-flux solution to be realised. If this Y(τ ) is
physically legitimate (decays with τ ), we can put it back into (5.16) to determine
F±0 (ξ) and then use that and Y(τ ) in (5.8) and (5.13) to determine the Fourier–Hermite
spectrum everywhere.

The integral in the right-hand side of (5.15) with (5.16) for F+0 can easily be done
after switching the order of z and σ integrations and changing the integration variable
z to ζ = z(1+ τ/σ ). As a result, (5.15) becomes

d
dτ

[∫ τ

0
dσ

Y(σ )
(τ − σ)1/3 −

∫ τmax

τ

dσ
Y(σ )

(σ − τ)1/3
]
= 1

3

∫ ∞
0

dσ
Y(σ )

(τ + σ)4/3 . (5.17)

The solution to (5.17) is, up to a multiplicative constant,

Y(τ )= 1
τ 2/3

, (5.18)

which we will presently show by direct substitution. In appendix C, we show that this
is indeed the only sensible solution. In appendix B, this scaling with τ emerges via a
much simpler (but less rigorous) argument arising from seeking a self-similar solution
to our problem.

With (5.18) for Y , all integrals in (5.17) are standard tabulated ones: the integral in
the right-hand side of (5.17) is (after rescaling the integration variable σ/τ→ σ )

right-hand side of (5.17) = 1
3τ

∫ ∞
0

dσ
σ 2/3(1+ σ)4/3 =

1
τ
, (5.19)

the first integral in the left-hand side is a constant (because τ can scaled out) and the
second one is dominated by the upper limit, so it is ≈ ln(τmax/τ) as τmax→∞. It then
follows immediately that their derivative in the left-hand side of (5.17) is

left-hand side of (5.17) ≈ d
dτ

(
const− ln

τmax

τ

)
= 1
τ

as τmax→∞. (5.20)

This is equal to (5.19) and so (5.18) is indeed a good solution.
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For future reference, these results imply that the energy flux through ξ = 0
associated with this solution is

∂Fk

∂k

∣∣∣∣
k→0

=±
(

3
2γ

)1/3

ξ 1/3 ∂F±

∂ξ

∣∣∣∣
ξ→0

(τ )= 31/3

γ 1/3Γ
(

1
3

) 1
τ
. (5.21)

5.3.1. Reconstruction of the full solution
Now let us describe the full solution for the Fourier–Hermite spectrum that follows

from what we have just derived. The spectrum at ξ → 0 (k→ 0) is given by (5.18).
In our original variables, this means

Fk→0(τ )= 1
τ 2/3

⇒ Ck→0,m = const
m3/2

. (5.22)

The spectrum at τ→ 0 (low m) is, via (5.16) and (5.18) (changing integration variable
to z= ξ 2/4σ ),

F±0 (ξ)=
24/3

Γ
(

1
3

) 1
ξ 4/3

⇒ Fk(τ→ 0)= 34/3

Γ
(

1
3

) γ 2/3

k2
⇒ Ck,m→m0 =

const
k2

.

(5.23)

These two scaling laws, the Hermite spectrum (5.22) and the Fourier spectrum (5.23)
also hold asymptotically across the entire phase space, at large enough m and k, as
we shall see shortly.

Using (5.18) in (5.13) and changing the integration variable to z= ξ 2/4(σ − τ), we
find

F−(τ , ξ)= 1
Γ
(

1
3

) ∫ ∞
0

dz
e−z(

τ z+ 1
4ξ

2
)2/3 =

eξ2/4τ

τ 2/3

Γ

(
1
3
; ξ

2

4τ

)
Γ
(

1
3

) . (5.24)

In the first of these expressions, both asymptotics (5.22) and (5.23) are manifest. In
the second expression, which is obtained by changing the integration variable z +
ξ 2/4τ→ z,

Γ

(
1
3
; ξ

2

4τ

)
=
∫ ∞
ξ2/4τ

dz z−2/3e−z (5.25)

is an upper incomplete gamma function.
Finally, using (5.23) and (5.18) in (5.8), we find

F+(τ , ξ) = e−ξ2/4τ

τ 2/3

1+ (−1)2/3

Γ
(

1
3
; − ξ

2

4τ

)
Γ
(

1
3

) − 1




= e−ξ2/4τ

τ 2/3

[
1+ 1

Γ
(

1
3

) ∫ ξ2/4τ

0
dz z−2/3ez

]
. (5.26)

The first term inside the bracket comes from the second integral in (5.8) (the boundary-
value term) and is obtained by the manipulations analogous to those that led to (5.24).
The second term comes from the first integral in (5.8) (the initial-value term), which
is turned into a tabulated integral by changing the integration variable to z = ξη/2τ
(and then changing z→−z to obtain the last integral representation, which is perhaps
more transparent than the one in terms of the incomplete gamma function).
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FIGURE 1. The function Fk(τ ) given by (5.27) (with γ = 1). The phase-mixing part of the
spectrum is on the right (k> 0), the anti-phase-mixing part on the left (k< 0). The total
energy is the sum and the Hermite flux the difference of these two. The broader-range
scaling behaviour is better represented on a log scale: see figures 2 and 3.

5.3.2. Self-similar solution
Assembling (5.24) and (5.26) together and returning them to the original variables,

we arrive at the following solution:

Fk(τ )= e−k3/9γ τ

τ 2/3


1+ 1

Γ
(

1
3

) ∫ k3/9γ τ

0
dz z−2/3ez, k> 0,

1
Γ
(

1
3

) ∫ ∞
|k|3/9γ τ

dz z−2/3e−z, k< 0,
(5.27)

where τ = (2m)3/2/3 − τ0 (τ0 is an order-unity offset). Hence the Fourier–Hermite
spectrum Ck,m and the Hermite flux Γk,m can be calculated according to (3.30) and
(3.31), respectively.

The solution (5.27) is plotted in figure 1, which shows a pleasingly non-trivial
shape. The essential result is, however, extremely simple. The solution is self-similar
and could, in fact, have been obtained as such, by a shorter, if marginally less general,
route (see appendix B). The similarity variable k3/9γ τ determines the demarcation
of the phase space into two asymptotic regions: the asymptotic of the spectrum
when |k| � (9γ τ)1/3 is (5.23) and the asymptotic when τ � |k|3/9γ is (5.22) (this
is particularly obvious in the second expression in (5.13)). The former describes
fluctuations in the ‘wavenumber inertial range’ with a vanishing Hermite flux, the
latter fluctuations in the ‘Hermite inertial range’, which also have zero Hermite flux.
These scalings are illustrated in figure 2 and the normalised Hermite flux

Γ̄ = Fk(τ )− F−k(τ )

Fk(τ )+ F−k(τ )
= Γk,m√

2m kCk,m
(5.28)

is plotted in figure 3(c). Γ̄ is a good measure of how different the nonlinear state
is from the linear one: for linear Landau-damped perturbations, we would have had
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(a) (b)

FIGURE 2. Typical cuts through the solution (5.27) (with γ =1) at (a) constant τ (τ =20),
(b) constant k (k= 7). The spectra of phase-mixing modes, Fk(τ ), are shown in red and
the spectra of anti-phase-mixing modes, F−k(τ ), in black. The asymptotic scalings (5.23)
and (5.22) are shown for reference and convergence to them is manifest in the limits
k� (9τ)1/3 and τ� k3/9, respectively. Two-dimensional plots of Fk(τ ) and of the resulting
Hermite flux and total energy spectrum are in figure 3.

Γ̄ = 1 everywhere (Kanekar et al. 2015). Note that, as follows immediately from
(5.27), Γ̄ = Γ̄ (k3/9γ τ) is a function of the similarity variable only.

Another useful result is the overall Hermite spectrum integrated over all
wavenumbers. While this, of course, misses the relationship between structure in
position and velocity space that we have focused on so closely, it is a good crude
measure of how ‘phase mixed’ the distribution is (cf. Hatch et al. 2014; Servidio
et al. 2017). So, from (3.30) and (5.27), after integrating out the self-similar functional
dependence of Fk(τ ) on k3/9γ τ , we deduce∑

k

Ck,m =
∑

k

Fk + F−k

2
√

m
∝ 1

m
. (5.29)

This scaling – or, equivalently, the k-by-k Ck,m ∝ m−3/2 scaling at large m (see
(5.22)), – being steeper than m−1/2, implies that our solution does indeed decay fast
enough in m in order for the collisional dissipation to vanish at vanishing collisionality
and so treating the collisionless limit as non-singular was justified (see discussion in
§ 4.2).7 Still, restoring finite ν leads to a kind of ‘Kolmogorov scale’ for our kinetic
turbulence and to a quantitative measure of the applicability, or otherwise, of the linear
approximation, so we are going to do this in § 5.4.

Finally, we may also calculate the overall wavenumber spectrum of the free energy:
again integrating out the self-similar functional dependence of Fk(τ ), we get∑

m

Ck,m ∝ 1
k
. (5.30)

Since the total variance of the perturbed distribution function is conserved in the
Kraichnan–Kazantsev model (see § 4.2), the above result can be made sense of as

7Note, however, that (5.29) implies that the amount of energy stored in phase space is logarithmically
divergent: anticipating the collisional estimates in § 5.4, we get

∑
m
∑

k Ck,m ∝ | ln ν|, by integrating up to
m∼ γ 1/3/ν. The same result can be obtained from (5.30) by integrating up to kν ∼ (γ /ν)1/2. This is to be
contrasted with

∑
m
∑

k Ck,m ∝ ν−1/3 in the linear regime (Kanekar et al. 2015).
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(a) (b)

(c) (d )

FIGURE 3. (a,b) Same as figure 1, but on a log scale and across a broader range of
k and τ . Note the asymptotic features (zero-flux solution, power-law scalings) discussed
in §§ 5.3.2 and 5.4. Cf. figure 4. (c) Normalised Hermite flux Γ̄ defined by (5.28). Its
contours are straight in the logarithmic coordinates because Γ̄ = Γ̄ (k3/9τ). (d) Total
energy spectrum [Fk(τ )+ F−k(τ )]/2 [see (3.30)].

the classical Batchelor (1959) scaling of a passive scalar advected by a single-scale
stochastic field.

5.4. Phase-space energy flows and role of collisions
The structure of our self-similar solution of (4.12) is, in fact, easily understood already
by means of a qualitative examination of the equation, which is also a useful approach
in evaluating the role of collisions. Figure 4 is a cartoon of phase-space energy flows
in aid of the discussion that follows (cf. figure 3a,b).
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FIGURE 4. Cartoon of energy flows in phase space, including collisional cutoff.
Cf. figure 3(a,b). Reminder: τ ∼m3/2 [see (4.7)] and γ is related to the stochastic electric
field via (5.33).

5.4.1. Phase-mixing region
The phase-mixing term dominates over the nonlinearity when

τ � k3

γ
⇒ ∂Fk

∂τ
= 0, (5.31)

so the solution is independent of τ in this region (see figure 3b). This is the linear
phase-mixing solution, Ck,m∝1/

√
m, obtained earlier by Zocco & Schekochihin (2011)

and Kanekar et al. (2015). Its wavenumber scaling, Fk ∝ 1/k2, is, however, a new
feature, extracting which required matching with other regions.

A way of making sense of this solution is to go back to the time-dependent (3.27)
[or (4.6)] and notice that, for k> 0, whatever solution f̃k (and, therefore, Fk) exists at
low s, it will propagate ‘upwards’ (to higher s) along the characteristic

s= kt√
2
, (5.32)

and it will do so unimpeded by the nonlinearity as long as the time t is shorter than
the nonlinear time tnl associated with the mode-coupling term in the right-hand side
of those equations. In the Kraichnan–Batchelor model,

t−1
nl ∼

s2γ

k2
, γ ∼ p4~p ∼ p4ϕ2

p tc, (5.33)

where tc is the correlation time of the wave field ϕp (effectively assumed to be single
scale). Requiring t� tnl in (5.32), we see that the phase-mixing region of the phase
space extends to s3� k3/γ , which is the same as the condition in (5.31).
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This gives us a way to estimate how small the wave amplitude must be in order for
the nonlinearity and associated effects never to matter: indeed, if the collision time is
short compared to the nonlinear time,

tν ∼ 1
νs2
� tnl ⇔ k�

(γ
ν

)1/2 ≡ kν, (5.34)

the phase-mixed distribution function will thermalise before the echo can bring any
energy back from phase space. Putting tν into (5.32) tells us how far into phase space
energy will travel:

τ ∼ s3� k
ν
≡ τν, k� kν . (5.35)

Perhaps the most practically important conclusion from this is that, given the
strength of the electric field and, therefore, via (5.33), the value of γ , we can predict
the collisional cutoff wavenumber kν , given by (5.34), at which phase mixing (Landau
damping) curtails the universal spectrum that we have derived above: we shall see in
a moment that for k� kν , Γ̄ = 1, i.e. there is no echo flux from high to low Hermite
moments.

5.4.2. Diffusion and echo regions
Considering the limit opposite to (5.31), i.e. the region of phase space where s�

ktnl, we get

τ � k3

γ
⇒ ∂2Fk

∂k2
= 0, (5.36)

i.e. k-space diffusion dominates. Our self-similar solution (§ 5.3.2) tells us that
the appropriate solution in this region is one independent of k (see figure 3a,b) and
Fk(τ )∝1/τ 2/3. This solution takes whatever values Fk(τ ) has at k∼ (γ τ)1/3 (figure 3b)
and transfers them across to k∼−(γ τ)1/3 (figure 3a), where anti-phase-mixing picks
them up and transfers them ‘downwards’ to low Hermite moments (τ→ 0), over times
that are again shorter than tnl (because τ � |k3|/γ again), along the characteristic

s= s0 − |k|t√
2
, (5.37)

where s0 ∼ τ 1/3
0 ∼ |k|/γ 1/3.

This last piece of the solution is the echo flux. It cancels the phase-mixing flux
exactly, provided the energy (Fk) from k>0 has been successfully transferred by phase
mixing from τ = 0 to τ ∼ k3/γ to be picked up by diffusion and carried over to the
anti-phase-mixing region k < 0. For k� kν , the energy gets intercepted at τ ∼ k/ν
[see (5.35)] and thermalised by collisions, so at τ ∼ k3/γ , Fk(τ )= 0. This then gives
F−k(0)= 0, i.e. no echo flux. Thus, kν is indeed the wavenumber cutoff – a kind of
‘Kolmogorov scale’ for Vlasov-kinetic turbulence – beyond which Landau damping
can act as an efficient route to (eventually collisional) dissipation.

6. Discussion
6.1. Summary

We have considered what is arguably the simplest kinetic turbulence problem available:
a 1-D Vlasov–Poisson (§ 2.1; or Vlasov–Boltzmann: see § 2.2) plasma with an energy

https://doi.org/10.1017/S0022377818000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000089


26 T. Adkins and A. A. Schekochihin

source. When collisions are vanishingly weak, this gives rise to interesting dynamics
across the 2-D (position and velocity) phase space. In a simple approximation where
the stochastic electric field mixing the particle distribution can be assumed to have
statistics independent of the high-order moments of this distribution, a solvable model
can be constructed in the same vein as the Kraichnan–Batchelor model used in
the passive-scalar problem. The resulting analytical solution displays the same key
features as have been surmised heuristically (Schekochihin et al. 2016) and found
numerically (Parker et al. 2016) for plasma systems with higher-dimensional phase
spaces (see § 6.2.5).

Namely, the free-energy flux from low to high Hermite moments is suppressed
– i.e. the dissipation channel associated with Landau damping is shut down – for
all wavenumbers below a certain cutoff kν = (γ /ν)1/2 (see § 5.4). This cutoff is
a kinetic analogue of the Kolmogorov scale: it scales inversely with the collision
rate ν and increases with the amplitude of the electric perturbations – the latter
determines γ , which is the rate of diffusion of the free energy in k space due to
the stochastic electric field. Thus, one might expect a kind of statistical ‘fluidisation’
of the turbulence in the ‘inertial range’ (k� kν) – perhaps a welcome development
from the point of view of the long history of attempts to reduce kinetics to fluid (or
‘Landau-fluid’) dynamics (see references and further discussion in § 6.2.4).

Expanding our interest beyond the effect of phase-space turbulence on the low
(‘fluid’) moments of the distribution function and to the structure of this turbulence
across the (Fourier–Hermite) phase space, we find the latter cleanly partitioned into
two regions: (i) the phase-mixing region k & γ 1/3√m, where phase mixing and
anti-phase-mixing transfer free energy between lower and higher Hermite moments
(cancelling on average), and (ii) the mode-coupling (or diffusion) region k . γ 1/3√m,
where the free energy is transferred between spatial scales (wave numbers) by the
advecting action of the stochastic electric field. An overview of how this happens is
provided in § 5.4 and figure 4, while the Fourier–Hermite spectrum is derived more
formally in § 5 (summarised in § 5.3.2). The resulting scalings are

Cm,k ∼


1

γ 2/3m3/2
, k . γ 1/3√m, m� γ 1/3

ν
,

1
k2
√

m
, γ 1/3√m . k� kν =

(γ
ν

)1/2
.

(6.1)

6.2. Open issues
There are a number of questions and lines of investigation that all this leaves open.
The more immediate and obvious of them are, naturally, to do with how universal
these results are, given the radical nature of the approximations that were made in
order to obtain them, and how they can be made more general and more applicable
to concrete physical problems. Let us itemise these questions briefly.

6.2.1. Multiscale electric fields
What happens outside Batchelor’s approximation (§ 4.3), i.e. when the stochastic

electric field cannot be treated as effectively single scale and, therefore, as providing a
diffusively accumulating series of small kicks in k space to the perturbed distribution
function? Formally, dealing with this issue is a matter of solving the integral equation
(4.7), rather than the differential equation (4.12). A certain (limited) amount of
progress on this is made in appendix A, suggesting somewhat steeper wavenumber
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spectra in the mode-coupling region. While we do not have the full solution, it
appears plausible that, even though scalings might change, the overall partitioning
of the phase space into (anti-)phase-mixing-dominated and mode-coupling-dominated
regions should persist and the Landau damping would still be suppressed. In fact, the
conversion between phase-mixing and anti-phase-mixing modes may be quicker in
this case than in Batchelor’s limit because the steps in k space need not be as small
as in the diffusive regime (cf. Schekochihin et al. 2016).

6.2.2. Finite-time-correlated electric fields
What happens outside Krachnan’s approximation (§ 4.1), i.e. if the assumption

of a short correlation time of the electric field is relaxed? The experience of
passive-advection problems in fluid dynamics (see, e.g. Antonsen et al. 1996; Bhat
& Subramanian 2015) suggests that generalising from white to finite-time-correlated
advecting field rarely leads to dramatic qualitative changes. In the context of plasma
kinetics, however, the limit, opposite to ours, of a long correlation time of the electric
field clearly requires special care to capture the phase-space structure that will arise
due to particle-trapping effects (Bernstein, Greene & Kruskal 1957; O’Neil 1965;
Manheimer 1971; O’Neil, Winfrey & Malmberg 1971).

6.2.3. Self-consistent electric fields
How does one construct a fully nonlinear theory of kinetic turbulence, i.e. one in

which the stochastic electric field is not prescribed but is determined self-consistently?
This requires coupling the high-m dynamics to the low-m ‘fluid’ equations derived
in § 3.1, i.e. one would have to progress from the vague understanding that the flux
to/from high Hermite moments is suppressed to a more quantitative model of how
this suppression can be incorporated into a dynamical (‘Landau fluid’; § 6.2.4) or,
more likely, statistical model of the low-m moments (and how many of them must be
kept). Once this is done, it becomes possible to assess to what extent a self-consistent
electric field can be compatible with the modelling choices made above: the Batchelor
(single scale) and Kraichnan (short correlation time) approximations.

Without claiming to have such a theory, let us offer a few naïve but plausible
estimates. Taking the limit of our solution at low m [the second asymptotic in (6.1)],
we find a k−2 spectrum. Let us conjecture that this spectrum is established in phase
space and imposes itself, via the linear Hermite coupling term in (3.10), on the lower
Hermite moments.8 So, starting with (3.10) for m= 3, we may predict9

〈|Tk|2〉 ≡ 2〈|gk,2|2〉 ∼ 〈|gk,4|2〉 ∼ 〈|gk,6|2〉 ∼ · · · ∼ k−2. (6.2)

From the wave equation (3.12) and in view of (3.11), we may estimate

n±k ∼
k2

ω2
k
θk = 2

3+ αk
θk, nk ∼ n±k , uk ∼ ωk

k
n±k =

√
3+ αk

2
n±k . (6.3)

8It is as yet poorly understood how the separation between the ‘fluid’ Hermite moments and the ‘kinetic’
ones should be made, i.e. how many lower moments ought to be treated as discrete, distinct fluid-like fields
and starting with what m the formalism based on continuity in Hermite space (§ 3.3 and onwards) can safely
take over. It seems clear that this transition must be at m of order unity (and certainly independent of ν),
except, in view of (3.19), when αk� 1 (i.e. when the wave frequency ωk is large compared to the particle
streaming rate kvth). In the latter case, we cannot use the 1/

√
m Hermite spectrum until m∼ αk/4 (in the

linear theory, a different spectrum can be derived for 1�m� αk/4, which falls off in great leaps from one
m to the next until it morphs into 1/

√
m at m∼ αk; see Kanekar et al. 2015, § 4.3).

9Note that an extreme way to achieve the balancing of the phase-mixing and anti-phase-mixing fluxes is
to suppress every other Hermite moment, e.g. the odd ones (starting with the heat flux gk,3, this would indeed
shut down Landau damping completely).
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Note that, regardless of the size of αk, nk is always either much smaller than or
comparable to θk. Therefore, Tk = θk + 2nk in (6.2) can be replaced by θk for the
purposes of these crude estimates. This gives us a prediction for the spectra of the
‘wave quantities’:

〈|nk|2〉 ∼
(

2
3+ αk

)2

k−2, 〈|uk|2〉 ∼ 2
3+ αk

k−2. (6.4)

At wavenumbers where, in (3.6), the self-consistent term (αkϕk) dominates over the
‘external’ one (χk), the electric-field spectrum is

〈|Ek|2〉 = k2〈|ϕk|2〉 ∼ k2α2
k 〈|nk|2〉 ∼

(
2αk

3+ αk

)2

. (6.5)

This tells us that, for example, for Vlasov–Poisson perturbations with kλDe� 1 and
αk = 2/k2 (see § 2.1), we should have 〈|Ek|2〉 ∼ k−4, which is a steep enough scaling
to justify Batchelor’s approximation.10 In contrast, if αk is a constant (ion-acoustic
perturbations; see §§ 2.2 and 2.3), the self-consistent 〈|Ek|2〉 is flat (cutoff at k ∼ kν)
and our model can only work if the external potential χk plays the dominant part
in the nonlinear mode coupling (in the case of ion-scale Zakharov turbulence, § 2.3,
this might be a credible possibility as χk is fed by the fast-oscillating electric fields
that satisfy an electron-time-scale fluid-like equation and have a tendency to form a
large-scale condensate; see Zakharov 1972 and the reviews cited in § 2.3).

Finally, if one is interested in the stochastic-acceleration problem (αk = 0;
§ 2.4), the electric field need not be self-consistent and the conclusion from the
above considerations is that particles stochastically accelerated by a short-time-
correlated electric field cutoff above wavenumber p will develop k−2 density, velocity,
temperature, etc. spectra at k� p. This appears to be a new result.

The above discussion should probably not satisfy a discerning reader: clearly, there
is much to be done before the link between the ‘kinetic’ and ‘fluid’ moments is
established in an analytically solid and quantitative way.

6.2.4. Implications for Landau-fluid closures
The question of what constitutes a quantitatively accurate closure scheme for

the first few fluid moments of a kinetic plasma system has been studied in some
detail, both analytically and numerically, in the framework of ‘Landau-fluid’ closures
(Hammett & Perkins 1990; Hammett, Dorland & Perkins 1992; Dorland & Hammett
1993; Hammett et al. 1993; Beer & Hammett 1996; Smith 1997; Snyder, Hammett &
Dorland 1997; Passot & Sulem 2004; Goswami, Passot & Sulem 2005; Tassi, Sulem
& Passot 2016; Passot, Sulem & Tassi 2017) and, indeed, by their detractors (e.g.
Mattor 1992; Weiland 1992). A crude view of the philosophy behind this approach is
that linear Landau-damping rates are incorporated explicitly into low-m fluid equations
to model the energy removal process into higher-order moments. This might appear
to be inconsistent with the notion, advocated by us, that phase mixing is cancelled by
anti-phase-mixing and thus Landau damping is effectively suppressed as a route to
thermalisation of the low-m energy. However, the situation is, in fact, more nuanced.

It was understood already in the course of development of early Landau-fluid
models that their performance improves if more fluid moments are included. It was

10Only just steep enough: we find Kk = k2~k ∼ 〈|Ek|2〉tc ∼ k−2 if we estimate the correlation time, from
(3.12), as t−1

c ∼ (k/ωk)kϕk ∼ 〈|Ek|2〉1/2
√

2/(3+ αk).
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also understood that the cause of this improvement is that nonlinearities in those fluid
equations act to reduce the phase-mixing rate to higher-order ‘unresolved’ moments
(Beer & Hammett 1996; Smith 1997). It seems plausible that keeping the ‘right’
number of moments is tantamount to keeping enough m’s to enable the system to
have enough anti-phase-mixing to capture the cancellation effect reasonably well –
and that if the truncation is done at some m that is still smaller than the m at which
the flux into higher-order moments is fully cancelled (which will depend on k), some
form of Landau-fluid closure may be adequate to mop up the residual flux.

Furthermore, if the cutoff scale kν is finite, i.e. if the collision rate is sufficiently
large (equivalently, the velocity-space resolution of a code is limited) and/or the
fluctuation amplitude is sufficiently small, the dissipation at k& kν should be perfectly
well described by the Landau rate corresponding to those k (see § 5.4). We also saw
(figure 3c) that, at least in our model, cancellation of the Hermite flux required k� p,
i.e. worked in the ‘inertial range’ (p� k� kν), rather than at the ‘energy-containing
scale’ of the turbulence. It is easy to imagine situations (e.g. in near-marginal tokamak
turbulence) in which the scale separation between p and kν might not be large.

Thus, the usefulness of Landau-fluid closures, judiciously applied, is not obviated
by the stochastic-echo effect – but it is clearly an interesting topic for exploration how
the type of results reported above might help one hone these closures with this effect
explicitly in one’s sights.

6.2.5. Three dimensions
What happens when the system is allowed to be three-dimensional in both velocity

and position space?
In magnetised, drift-kinetic plasmas, this, in fact, brings in only one extra

phase-space variable (k⊥ in addition to k‖, all statistics being isotropic in the plane
perpendicular to the magnetic field); phase mixing in drift kinetics is only in v‖, so
there is only one velocity-space dimension – provided the equilibrium is isotropic (if
it is not, there is also phase-mixing in v⊥; see Dorland & Hammett 1993, Mandell,
Dorland & Landreman 2017). The nonlinearity in a magnetised plasma is of a more
traditional ‘fluid’ type, viz., it is the advection of δf by turbulent E × B flows. A
certain amount of progress has been made (Hatch et al. 2014; Kanekar 2015; Parker
et al. 2016; Schekochihin et al. 2016) and is being made with this problem in
application both to laboratory-inspired turbulence models and to the solar wind.

At scales where the finite size of particles’ Larmor orbits is felt, this triggers
vigorous nonlinear phase mixing in v⊥: the ‘entropy cascade’ introduced by
Schekochihin et al. (2008, 2009) (but anticipated already by Dorland & Hammett
1993) and first numerically diagnosed by Tatsuno et al. (2009) and Bañón Navarro
et al. (2011) (see also Kawamori 2013, who claims experimental confirmation). Thus,
gyrokinetic turbulence has a 5-D phase space. Outside the gyrokinetic approximation,
at high frequencies (comparable and exceeding the Larmor frequencies of the
particles), the phase space finally becomes six-dimensional, as the distribution function
can develop structure also in the gyroangle.

In a recent promising development, the first harbinger has appeared (Servidio
et al. 2017) of a stage in spacecraft exploration of plasma turbulence in the Earth’s
magnetosphere and the solar wind when 3-D Hermite spectra (and, perhaps, 6-D
Hermite–Fourier ones) become measurable and thus so much more attractive as a
subject for theoretical prediction, now falsifiable (and not necessarily just Hermite
spectra; see Howes, Klein & Li 2017 and Klein, Howes & Tenbarge 2017).
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This is a good note to finish on: phase-space turbulence as a new frontier for
observation and measurement, as well as theory – for we must hope that the
phenomena that are revealed by simple solvable models of kinetic turbulence are
not just interesting or aesthetically pleasing but also real.

Acknowledgements
We are grateful to T. Antonsen, F. Califano, P. Dellar, R. Meyrand, J. Parker,

D. Ryutov, J. Squire and L. Stipani for discussions of this and related problems,
and especially to W. Dorland and G. Hammett, who offered detailed comments
on the manuscript. T.A.’s work was supported by the R. Peierls Centre’s and
Merton College’s undergraduate summer research bursary schemes. A.A.S.’s work
was supported in part by grants from UK STFC and EPSRC. Both authors gratefully
acknowledge the hospitality of the Wolfgang Pauli Institute, University of Vienna,
where a significant part of this research was performed.

Appendix A. Solutions of (4.7) and the Batchelor approximation
Here we explore how the solutions of (4.7) might change if the electric-field

correlation function Kp = p2~p does not decay quickly enough in order for the
Batchelor approximation [i.e. the expansion (4.11)] to be legitimate – and also
under what condition on Kp it is legitimate. Even if it cannot be turned into a
differential operator, the mode-coupling integral in the right-hand side of (4.7) will,
qualitatively, still provide a kind of smoothing effect in k space (in the Batchelor
limit, this was diffusion) and transfer Fk from positive to negative wavenumbers,
causing anti-phase-mixing. One might again expect that this mode-coupling term will
dominate over the phase-mixing term, k∂Fk/∂τ , at sufficiently small k and sufficiently
large τ , whereas in the opposite limit, the phase mixing (or anti-phase-mixing) will
simply transfer energy ‘vertically’ in the (k, τ ) plane (analogously to figure 4). The
solutions of (4.7) in the mode-coupling-dominated region will then be such functions
Fk that the right-hand side of (4.7) vanishes.

It is convenient to write this as follows, converting the wavenumber sum into an
integral ∫ +∞

−∞
dq Kk−q(Fk − Fq)= 0. (A 1)

Let us assume that Kp ∝ |p|α and Fk ∝ |k|β . Scaling out |k|α+β+1 and changing the
integration variable to ξ = q/|k|, we find that the above integral is proportional to

I =
∫ ∞

0
dξ (1− ξ β) (|1− ξ |α + |1+ ξ |α) . (A 2)

The change of variables η= 1/ξ (a 1-D Zakharov transformation; see Zakharov, L’vov
& Falkovich 1992) turns this integral into

I =−
∫ ∞

0

dη
η2+β+α (1− ηβ) (|1− η|α + |1+ η|α) . (A 3)

This is just −I and so I =−I = 0, as required, if

β =−2− α ⇒ Fk ∝ |k|−2−α. (A 4)
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This is the desired solution satisfying (A 1). It is only valid provided the integral I
converges, the conditions for which are

β >−1, −2<α <−1 ⇒ −1<β < 0. (A 5)

Otherwise, the integral (A 1) is dominated by what happens at the low- or high-
wavenumber cutoffs or at |p| = |k− q| � |k| (i.e. ξ ≈ 1).

The latter wavenumber range (|p| � |k|) takes over the integral (A 1) for α 6 −2.
This corresponds to the flat solution (β = 0) at |k|. |p| that was derived in § 4.4 and
that at |k|� |p| transitions seamlessly into the Batchelor-limit solution worked out in
§ 5 (or appendix B). Thus, the condition of validity of the Batchelor approximation is
that Kp must certainly decay more steeply than |p|−2.

Whether the shallow power-law solutions (A 4) have any interesting physical
applications remains to be seen. Presumably, they indicate that when the Batchelor
approximation is broken, the k spectrum in the mode-coupling-dominated region
becomes a little steeper than the flat Batchelor-limit solution – with some attendant
change in the τ spectrum (and also in the k spectrum in the phase-mixing-dominated
region), to find which we would need to calculate the solution of (4.7) more precisely,
taking into account the fact the power law (A 4) does not, in fact, extend to arbitrarily
large k.

It is perhaps worth noting that these solutions must be rather particular to the
1-D world, as wavenumber integrals expressing nonlinear mode coupling become
quite different in more dimensions (see, e.g. Zakharov et al. 1992).

Appendix B. Self-similar solution of (4.12)
Consider (4.12) with ν = 0:

k
∂Fk

∂τ
= γ ∂

2Fk

∂k2
. (B 1)

This equation has a self-similar solution of the form

Fk(τ )= 1
τ λ
Φ(κ), κ = k3

γ τ
, (B 2)

where Φ(κ) satisfies an ordinary differential equation readily obtained by substituting
(B 2) into (B 1):

9κΦ ′′ + (6+ κ)Φ ′ + λΦ = 0. (B 3)

A standard method for fixing the exponent λ for self-similar solutions such as (B 2)
is to use some conservation law that the solution must satisfy. In this case, there is
indeed a conservation law: (B 1) implies

d
dτ

∫ +∞
−∞

dk kFk = 0. (B 4)

Using (B 2), we find ∫ +∞
−∞

dk kFk = τ
(2/3)−λ

3

∫ +∞
−∞

dκ κ−1/3Φ(κ), (B 5)
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which would appear to require
λ= 2

3 (B 6)

to make the integral (B 5) independent of τ . In fact, we know from the argument in
§ 4.2 that this integral must be zero at τ → 0. In view of (B 4), it must then also
be zero at all τ . Thus, the choice of λ= 2/3 cannot really be justified a priori, but
it is intriguing because with this value, (B 3) is rendered easily solvable, so we will
examine its consequences before discussing its legitimacy.

With λ= 2/3, (B 3) is solved by the following substitution:

ψ =Φ ′ + 1
9
Φ ⇒ κψ ′ + 2

3
ψ = 0 ⇒ ψ = C1

|κ|2/3 , (B 7)

where C1 is an integration constant. Integrating again, we find

Φ(κ)= e−κ/9
(

C1

∫ κ

−∞
dκ ′|κ ′|−2/3eκ

′/9 +C2

)
, (B 8)

where C2 is another integration constant. It is clear that C2= 0, lest Φ(κ) blow up at
κ→−∞. Cleaning up the remaining solution by changing the integration variable to
z= κ ′/9, setting C1=

[
91/3Γ (1/3)

]−1 (this is arbitrary and done for aesthetic reasons)
and using the resulting Φ(κ) in (B 2), we arrive at the following solution

Fk(τ )= e−k3/9γ τ

τ 2/3

1
Γ
(

1
3

) ∫ k3/9γ τ

−∞
dz |z|−2/3ez. (B 9)

If we split the k > 0 and k < 0 cases explicitly, we recover the solution (5.27). It is
a simple matter to ascertain that (B 9) has the asymptotics (5.22) and (5.23) when
the similarity variable k3/9γ τ is small or large, respectively. Indeed, changing the
integration variable z− k3/9γ τ→−z in (B 9), we get

Fk(τ )= 1
Γ
(

1
3

) ∫ ∞
0

dz
e−z∣∣∣∣ 1

9γ
k3 − τ z

∣∣∣∣2/3
→


1
τ 2/3

,
|k|3
9γ τ
� 1,

34/3

Γ
(

1
3

) 1
k2
,
|k|3
9γ τ
� 1.

(B 10)

This solution manifestly has vanishing Hermite flux (Fk = F−k) at τ � |k3|/9γ (as
well as in the opposite limit, but this is just a trivial requirement of continuity of Fk
at k= 0).

Obviously, the above derivation is much more elementary and may, to some readers,
be more convincing than that offered in § 5. Methodologically, however, it was not
necessarily obvious either that the self-similar solution would prove to be the only
one that would have matching (k by k) phase-mixing and anti-phase-mixing fluxes
at τ → 0 or that this solution would be the only physically acceptable one. As we
already indicated above, the choice of λ = 2/3 was merely a convenient conjecture.
In order to ascertain that it is the only possible choice, we would have to solve (B 3)
for arbitrary λ (which can be done in special functions) and then demand that the
solutions are positive (i.e. represent physically realisable spectra) and satisfy (4.10).
This can be done, but the argument for λ= 2/3 given in appendix C is perhaps more
mathematically compelling and at any rate no less cumbersome.

Admittedly, the formal shortcomings of the self-similar route to the answer are
probably overcome by its appealing simplicity.
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Appendix C. Inevitability of the zero-flux solution (5.18)
Here we exercise due diligence by showing that the solution found in § 5, which we

found using an initial guess (5.18), is indeed the only physically and mathematically
sensible one.

Let us no longer make an explicit demand for a zero-flux solution, which led us
from (5.15) to (5.17), the solution of which was (5.18). Instead of (5.18), let us posit
some general power law for the Hermite spectrum at ξ→ 0:

Y(τ )= 1
τ λ
. (C 1)

With this ansatz, the left-hand side of (5.15) becomes

left-hand side of (5.17) = τ−λ−(1/3)Γ
(

2
3

) [Γ (λ+ 1
3

)
Γ (λ)

−
(
λ− 2

3

)
Γ (1− λ)

Γ
(

5
3 − λ

) ]

+ d
dτ
τ (2/3)−λB

(
τ

τmax
; λ− 2

3
,

2
3

)
︸ ︷︷ ︸

→0 as τmax→∞

, (C 2)

where B is the incomplete beta function. While the second integral in (5.15), equalling
the expression under the derivative in (C 2), is divergent when λ< 2/3 and τmax→∞,
its τ derivative vanishes in this limit and so the values λ< 2/3 are formally allowed.
The case λ=2/3 has to be treated differently, but has already been considered in § 5.3.
Finally, we must have λ< 1 in order to keep the first integral in (5.15) convergent.

To calculate the right-hand side of (5.15), we assume a general power law for the
phase-mixing part of the Fourier spectrum at τ→ 0,

F+0 (ξ)=
A
ξµ
=
(

3
2

)µ A
k3µ/2

, (C 3)

where A is a constant, and find

right-hand side of (5.17) = τ−(µ/2)−(1/3)2−µΓ
(

1− µ
2

)
A. (C 4)

In order for (5.15) to be satisfied, we must have

λ= µ
2

(C 5)

and

A = 22λΓ
(

2
3

) [ Γ
(
λ+ 1

3

)
Γ (λ)Γ (1− λ) −

λ− 2
3

Γ
(

5
3 − λ

)]

= 22λΓ
(

2
3

) λ− 2
3

Γ
(

5
3 − λ

) { sin πλ

sin
[
π
(
λ− 2

3

)] − 1

}
. (C 6)

The spectrum (C 3) must be positive: within our allowed interval λ< 1, we can have
A> 0 only if λ< 5/6.
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Finally, via (5.16), the ansatz (C 1) implies that the anti-phase-mixing Fourier
spectrum at τ→ 0 is

F−0 (ξ)= 22λΓ
(
λ+ 1

3

)
Γ
(

1
3

) 1
ξ 2λ
. (C 7)

(the integral is done by changing the integration variable to z = ξ 2/4σ ). In view of
(C 5), this is the same scaling as for the phase-mixing spectrum (C 3)! But this means
that the condition (4.10) can only be satisfied if the coefficients in (C 7) and (C 3)
match. With A given by (C 6), this leads us, therefore, to demand

A= 22λΓ
(
λ+ 1

3

)
Γ
(

1
3

) ⇔ cos
[
π
(
λ− 1

3

)]= 1
2 . (C 8)

This is satisfied for λ= 2/3, which hands us back our zero-flux solution (5.18) and
everything that it implies.

The reason that this has proved to be the only physically acceptable possibility is
that for any 0<λ<2/3, we would have F+0 >F−0 and their wavenumber scaling would
be shallower than 1/k2, causing the integral in (4.10) to blow up. For 2/3< λ< 5/6,
the integral is finite but negative, meaning that there is no steady state and there is an
unphysical net inflow of energy from high m. For even larger values of λ, either there
is no positive spectrum at all or the energy flux through k= 0 blows up. Finally, λ= 0
is not allowed because, even though (C 8) and so (4.10) are satisfied, the right-hand
side of (4.9) no longer vanishes at ν → +0 and so the steady-state energy budget
breaks down, i.e. no such steady-state solution can exist – this is a demonstration that
the linear Hermite solution does not work in a nonlinear steady state.
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