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Abstract

A group K is said to be a B-group if every permutation group containing K as a regular
subgroup is either imprimitive or 2-transitive. In the second edition of his influential textbook
on finite groups, Burnside published a proof that cyclic groups of composite prime-power
degree are B-groups. Ten years later, in 1921, he published a proof that every abelian group
of composite degree is a B-group. Both proofs are character-theoretic and both have serious
flaws. Indeed, the second result is false. In this paper we explain these flaws and prove
that every cyclic group of composite order is a B-group, using only Burnside’s character-
theoretic methods. We also survey the related literature, prove some new results on B-groups
of prime-power order, state two related open problems and present some new computational
data.

2010 Mathematics Subject Classification: 20B05, secondary: 20B15, 20C15.

1. Introduction

In 1911, writing in section 252 of the second edition of his influential textbook [6],
Burnside claimed a proof of the following theorem.

THEOREM 1·1. Let G be a transitive permutation group of composite prime-power
degree containing a regular cyclic subgroup. Either G is imprimitive or G is 2-transitive.

An error in the penultimate sentence of Burnside’s proof was noted in [7, page 24], where
Neumann remarks ‘Nevertheless, the theorem is certainly true and can be proved by similar
character-theoretic methods to those that Burnside employed’. In section 3 we present the
correct part of Burnside’s proof in today’s language. In section 4 we prove Theorem 1·1
by the method proposed by Burnside, using the lemma on cyclotomic integers in section 2
below to fix Burnside’s error. In section 5 we build on the correct part of Burnside’s proof in
a different way, obtaining an entirely character-theoretic proof of the following variation on
Theorem 1·1.

THEOREM 1·2. Let G be a transitive permutation group of composite non-prime-power
degree containing a regular cyclic subgroup. Either G is imprimitive or G is 2-transitive.

In honour of Burnside, Wielandt [38, section 25] defined a B-group to be a group K such
that every permutation group containing K as a regular subgroup is either imprimitive or
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614 MARK WILDON

2-transitive. Thus Theorems 1·1 and 1·2 imply that cyclic groups of composite order are
B-groups.

The early attempts to prove this result by character-theoretic methods are rich with
interest, but also ripe with errors. Our second aim, which occupies section 6, is to untan-
gle this mess. We end in section 7 with some new results on abelian B-groups which require
the Classification Theorem of Finite Simple Groups. We state an open problem on when Cn

2

is a B-group, present a partial solution, consider B-groups of prime-power order and make
some further (much more minor) corrections to the literature.

At a late stage in this work, the author learned of [25], in which Knapp gives another way
to fix Burnside’s proof of Theorem 1·1, using essentially the same lemma as in section 2.
The key step in Knapp’s proof is his proposition 3·1. It uses two compatible actions of the
Galois group of Q(ζ ) : Q, where ζ is a root of unity of order the degree of G: firstly on the
set permuted by G, and secondly on the corresponding permutation module. The proof of
Theorem 1·1 given here uses only the second action (in a simple way that is isolated in the
second step), and is more elementary in several other respects. The inductive approach in our
third step is also new. Given the historical importance of Theorem 1·1, the author believes it
is worth putting this shorter proof on record. Theorem 1·2 is not proved in [25].

2. Lemma on cyclotomic integers

The following lemma is essentially the same as [25, Lemma 4·1]. A proof is included for
completeness. Recall that the degree of the extension of Q generated by a primitive dth root
of unity is φ(d), where φ is Euler’s totient function.

LEMMA 2·1. Let p be a prime and let n ∈ N. For each r such that 1 ≤ r < pn−1, let

R(r)= {r, r + pn−1, . . . , r + (p − 1)pn−1}.
Let ζ be a primitive pnth root of unity and let ω= ζ pn−1

. If
∑pn−1

i=0 aiζ
i ∈ Q[ω] where ai ∈ Q

for each i , then the coefficients ai are constant for i in each set R(r).

Proof. By the Tower Law [Q(ζ ) : Q(ω)] = [Q(ζ ) : Q]/[Q(ω) : Q] = φ(pn)/φ(p)= (p − 1)
pn−1/(p − 1)= pn−1. Therefore �(X)= X pn−1 −ω is the minimal polynomial of ζ over
Q(ω). By hypothesis there exists γ ∈ Q[ω] such that

f(X)= −γ +
∑

0≤i<pn

ai X i

has ζ as a root. Hence f(X) is divisible in Q(ω)[X ] by �(X). There is a unique expression
f(X)= f0(X)+ ∑

0<r<pn−1 fr (X) where

fr (X)=
∑

0≤i<pn

i≡r mod pn−1

ai Xi

for 0< r < pn−1. The remainder when Xd is divided by�(X) has non-zero coefficients only
for those Xc such that c is congruent to d modulo pn−1. Therefore each fr (X) is divisible by
�(X) and so fr (ζ )= 0 for each r . Since the coefficients of fr for 0< r < pn−1 are rational,
it follows that each such fr is divisible, now in Q[X ], by the minimal polynomial of ζ over
Q, namely �pn (X)= 1 + X pn−1 + · · · + X (p−1)pn−1

. Since fr has degree at most pn − 1, this
implies that fr (X)= br Xr�pn (X) for some br ∈ Q. The lemma follows.
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3. Burnside’s method: preliminary results

We may suppose that G acts on {0, 1, . . . , d − 1}, where d ∈ N is composite, and that
g = (0, 1, . . . , d − 1) is a d-cycle in G. Let H be the point stabiliser of 0. Let M =
〈e0, e1 . . . , ed−1〉C be the natural permutation module for G. Let ζ be a primitive d-th root
of unity and for 0 ≤ j < d let

v j =
∑

0≤i<d

ζ−i j ei . (3·1)

We use this notation throughout sections 3–5.
Since ei g = ei+1, where subscripts are taken modulo d, we have v j g = ζ jv j for each j .

Note that v0 = ∑
0≤i<d ei spans the (unique) trivial CG-module of M . Let

M = 〈v0〉 ⊕ V1 ⊕ · · · ⊕ Vt (3·2)

be a direct sum decomposition of M into irreducible CG-submodules. The v j are eigen-
vectors of g with distinct eigenvalues. Therefore they form a basis of M . Moreover, since
the eigenvalues are distinct, each of the summands V1, . . . , Vt has a basis consisting of
some of the v j . Thus the decomposition in (3·2) is unique. For each summand Vk , let
Bk = { j : 0< j < pn, v j ∈ Vk}. Let φk be the character of Vk .

The following two lemmas are the key observations in Burnside’s method.

LEMMA 3·1. For each k such that 1 ≤ k ≤ t , the vector
∑

j∈Bk
v j spans the unique

H-invariant submodule of Vk.

Proof. The permutation character π of G is 1G + ∑t
k=1 φk , where the summands are distinct

and irreducible. By Frobenius reciprocity we have

1 = 〈π, φk〉G = 〈1H

�⏐G
, φk〉G = 〈1H , φk

⏐�
H
〉H

for each k. Therefore each Vk has a unique 1-dimensional CH -invariant submodule. Since
e0 = (1/pd)

∑
0≤ j<d v j is H -invariant, and the projection of e0 into Vk is (1/pd)

∑
j∈Bk

v j ,
this submodule is spanned by

∑
j∈Bk

v j .

LEMMA 3·2. If O is an orbit of H on {0, 1, . . . , d − 1} and 1 ≤ k ≤ t then the sum∑
i∈O ζ

i j is constant for j ∈ Bk.

Proof. Observe that
∑

i∈O ei is H -invariant. An easy calculation (which may be replaced
by the observation that the character table of Cd is an orthogonal matrix) shows that ei =
1
pd

∑
0≤ j<d ζ

i jv j for each i . Therefore∑
i∈O

ei =
∑

0≤ j<d

(∑
i∈O

ζ i j
)
v j .

The projection of the left-hand side into Vk is
∑

j∈Bk

∑
i∈O ζ

i jv j . By Lemma 3·1 the
coefficients are constant for j ∈ Bk .

The following proposition is used in the final step of the proof of both main theorems.

PROPOSITION 3·3. If there is a prime p dividing d and a summand Vk whose basis {v j : j ∈
Bk} contains only basis vectors v j with j divisible by p then there exists a normal subgroup
of G containing gd/p whose orbits form a non-trivial block system.
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Proof. Let N be the kernel of G acting on Vk . Since v j g = ζ jv j , N contains gd/p. By
Lemma 3·1, Vk has 〈∑ j∈Bk

v j 〉 as an H N -invariant subspace. Since Vk is not the trivial
module, we have H N <G. Hence N is non-trivial but intransitive. The orbits of the normal
subgroup N are blocks of imprimitivity for G.

4. Proof of Theorem 1·1
We use the notation from section 3.

First step

By hypothesis G has degree pn where p is prime and n ≥ 2. The Galois group
Gal(Q(ζ ) : Q) of the field extension Q(ζ ) : Q permutes the basis vectors v j while pre-
serving the unique direct sum decomposition (3·2). Hence Gal(Q(ζ ) : Q) permutes the sets
B1, . . . , Bt . By Proposition 3·3, we may assume that every Bk contains some j not divisible
by p. Hence, given any m such that 0<m < n, there exists j not divisible by p such that
the set Bk containing pm also contains j . Let B	 be the set containing 1. Since the Galois
group is transitive on {ζ j : 0< j < pn, p � j}, by conjugating ζ j to ζ , we see that pmc ∈ B	
for some c not divisible by p.

Recall that H is the point stabiliser of 0. Let P be the partition of {1, . . . , pn − 1} into
the orbits of H other than {0}. The previous paragraph and Lemma 3·2 imply that for all m
such that 0<m < n there exists cm ∈ N, not divisible by p, such that∑

i∈O
ζ i =

∑
i∈O

ζ pm cm i (4·1)

for each O ∈P .

Second step

We shall show by induction on n that (4·1) implies that P is the one-part partition. It then
follows that H is transitive on {1, . . . , pn − 1} and so G is 2-transitive, as required.

Fix O ∈P . Taking m = n − 1 in (4·1) and applying Lemma 2·1 with ω= ζ pn−1cn−1 , we
find that the coefficients in

∑
i∈O ζ

i are constant on the sets R(r)= {r, r + pn−1, . . . , r +
(p − 1)pn−1} for 0< r < pn−1. Hence O is a union of some of these sets, together with some
of {pn−1}, . . . , {(p − 1)pn−1}. The contributions from R(r) to (4·1) are∑

i∈R(r)

ζ i = 0, (4·2)

∑
i∈R(r)

ζ pm cm i = pζ pm cmr . (4·3)

Case n = 2.
Let ω= ζ pc1 . Taking m = 1 in (4·1) and substituting the relations in (4·2) and (4·3) we get∑

r∈O
0<r<p

0 +
∑
pi∈O

ωi =
∑
r∈O

0<r<p

pωr +
∑
pi∈O

0<i<p

1.

This rearranges to∣∣{O ∩ {p, 2p, . . . , (p − 1)p}∣∣ +
∑

0<i<p

(p[i ∈O] − [pi ∈O])ωi = 0,
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where the Iverson bracket [P] is 1 if the statement P is true, and 0 if false. Since the minimal
polynomial of ω, namely 1 + X + · · · + X p−1, has degree p − 1 and constant coefficients,
it follows that

∣∣{O ∩ {p, . . . , (p − 1)p}∣∣ = p − 1 and i ∈O for each i such that 0< i < p.
Thus O = {1, . . . , p2 − 1} as required.

Inductive step
Let n ≥ 3. Let T = {pn−1, . . . , (p − 1)pn−1}. Substituting (4·3) in the right-hand-side

of (4·1) for first m = 1 and then a general m such that 0<m < n, we have∑
r∈O

0<r<pn−1

pζ pc1r + |O ∩ T | =
∑
r∈O

0<r<pn−1

pζ pm cmr + |O ∩ T |.

For each O ∈P , define O
 =O ∩ {1, . . . , pn−1 − 1}. Clearly {O
 :O ∈P} is a set partition
of {1, . . . , pn−1 − 1}. Let ζ
 = ζ pc1 and, for each m such that 0<m < n, choose dm ∈ N
such that c1dm ≡ cm mod p. We may suppose that d1 = 1. Replacing r with i
, the previous
displayed equation implies ∑

i
∈O


ζ i

 =

∑
i
∈O


ζ pm−1dm i


 .

Comparing with (4·1), we see that all the conditions are met to apply the inductive hypothe-
sis. Hence O
 = {1, . . . , pn−1 − 1} and so O contains {1, . . . , pn − 1}\T . By (4·2) and (4·3)
we have

∑
i∈{1,...,pn−1}\T ζ

i = 0 and∑
0<i<pn−1

i �∈T

ζ pc1i = p
∑

0<i<pn−1

ζ i

 = −p.

Substituting these two results in the case m = 1 of (4·1) we get∑
pn−1i∈O∩ T

ζ pn−1i = −p + |O ∩ T |.

It follows, as in the final step of the case n = 2, that |O ∩ T | = p − 1 and so O ⊇ T and
O = {1, . . . , pn − 1}, as required.

5. Proof of Theorem 1·2
We continue from the end of section 3. Thus G acts on {0, 1, . . . , d − 1} and has 〈g〉 ∼= Cd

as a regular cyclic subgroup. Let ϑ : 〈g〉 → C be the faithful linear character of 〈g〉 defined
by ϑ(g)= ζ , where as before ζ is a primitive dth root of unity. For 1 ≤ k ≤ t , let πk be
the character of Vk restricted to 〈g〉. Since 〈v j 〉 affords ϑ j , we have πk = ∑

j∈Bk
ϑ j . Since

the sets B1, . . . , Bt are disjoint, the characters πk are linearly independent. Moreover, by the
remark at the top of page 648 of [25], the πk span a subalgebra of 〈ϑ j : 0 ≤ j < d〉. (This
subalgebra is the dual Schur ring of G in the sense of [35, Theorem 1·9(d)].)

Let p be a prime dividing d. The character of V ⊗p
k is π p

k . Since (a + b)p ≡ a p + bp mod
p for all a, b ∈ Z, we have

π
p

k =
∑

0≤r<d/p

∣∣{ j ∈ Bk : j p ≡ r p mod d}∣∣ϑrp + pπ (5·1)
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for some character π of 〈g〉. By the end of the previous paragraph, we may write
π

p
k − pπ = a1H + ∑t

	=1 a	π	 where a, a1, . . . , at ∈ Z. By the linear independence of the
π	, it follows from (5·1) that if a	 �= 0 then π	 contains only characters of the form ϑrp with
1 ≤ r < d/p. Thus for any such 	, B	 contains only basis vectors v j with j divisible by
p and, by Proposition 3·3, G is imprimitive. We may therefore assume that

∣∣{ j ∈ Bk : j p ≡
r p mod d}∣∣ is a multiple of p for each r such that 1 ≤ r < d/p. Identifying {0, 1, . . . , d − 1}
with Z/dZ, note that j p ≡ r p mod d if and only if j ∈ r + 〈d/p〉. Therefore for each
prime p dividing d, each Bk is the union of a subset of 〈d/p〉 and some proper cosets
r + 〈d/p〉.

Let q be a prime dividing d other than p. Since the subgroups 〈d/p〉 and 〈d/q〉 of Z/dZ
meet in 0, each member of 〈d/p〉\{0} is in a proper coset of 〈d/q〉, and similarly with p
and q swapped. By the conclusion of the previous paragraph, if Bk meets 〈d/pq〉 then Bk

contains 〈d/pq〉\{0}. At most one Bk has this property. If t = 1 then G is 2-transitive, so
we may assume that d > pq and there exists Bk not meeting 〈d/pq〉. For this Bk there exist
r1, . . . , rs such that 0< r1 < · · ·< rs < d/pq and

Bk =
s⋃

e=1

(re + 〈d/pq〉).

Thus |Bk | = spq and

πkπk = s
(
ϑ0 + ϑd/pq + · · · + ϑ(pq−1)d/pq

) +ψ, (5·2)

where the coefficient of ϑ j in ψ is equal to the number of pairs (e, e′) such that j ∈ −re +
re′ + 〈d/pq〉. There are exactly s such pairs if and only if for all e there exists a unique
e′ such that re + j + 〈d/pq〉 = re′ + 〈d/pq〉, or, equivalently, if and only if Bk + j = Bk ,
where the addition is performed in Z/dZ. Let

J = { j ∈ Z/dZ : Bk + j = Bk}.
Since J is a subgroup of Z/dZ containing d/pq we have J = 〈m〉 for some m dividing
d/pq . Since 0 �∈ Bk , and so −r1, . . . ,−rs �∈ J , we have m > 1. Thus (5·2) may be rewritten
as

π kπk = s
(
ϑ0 + ϑm + · · · + ϑn−m

) + φ,

where 〈φ, ϑ j 〉< s for all j not divisible by m. By the linear independence of π1, . . . , πt ,
there exists πk such that if 〈πk, ϑ j 〉> 0 then j is a multiple of m. The result now follows
from Proposition 3·3.

6. A historical survey of Burnside’s method and B-groups

6·1. Burnside’s work for prime-power degree

We begin in 1901 with [3, section 7], in which Burnside used character-theoretic argu-
ments to prove the following important dichotomy. (All of the papers of Burnside discussed
below appear in volume II of his collected works [8].)

THEOREM 6·1 (Burnside [3, section 7]). A permutation group of prime degree p is either
2-transitive or contains a normal subgroup of order p.
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In [3, section 8] Burnside proves Theorem 1·1 for permutation groups of odd degree p2

using character theory. He comments ‘It appears highly probable that this result may be
extended to any group of odd order which contains a regular substitution of order equal to
the degree of the group; but I have not yet succeeded in proving this.’

In the revised second edition of his textbook [6], Burnside added five entirely new chapters
on linear groups and characters. Most notably these include the well-known character-
theoretic proof of the paqb-Theorem. In section 251 he used the method of cyclotomic sums
and basis sets, introduced in his 1906 paper [4, section 7] but presented in his textbook with
some simplifications, to prove Theorem 6·1. The following section 252, whose correct part
was presented in section 3, attempts to prove Theorem 1·1. Burnside’s argument appears to
have been generally accepted, both at the time and later, until Neumann pointed out the error
in his essay in [39]. For example, it is cited without critical comment by Wielandt in [38].
Its mistake is to assert that the only solutions to (4·1) when m = n − 1 have |O| = pn − 1.
This gives one solution, but there are others.

Recall that if 1 ≤ r < pn−1 then R(r)= {r, r + pn−1, . . . , r + (p − 1)pn−1}. Define Z ⊆
{1, . . . , pn − 1} to be null if there exists s ∈ N0 and distinct ri j ∈ {1, . . . , pn−1 − 1} for 0 ≤
i ≤ p − 1 and 1 ≤ j ≤ s such that ri j ≡ i mod p for each i and j and Z = ⋃p−1

i=0

⋃s
j=1 R(ri j ).

PROPOSITION 6·2. Let n ≥ 2 and let ω be a primitive pth root of unity. Let O ⊆
{1, . . . , pn − 1}. Then ∑

i∈O
ζ i =

∑
i∈O

ωi

if and only if either:
(i) O is null; or

(ii) O = {pn−1, . . . , (p − 1)pn−1} ∪ ⋃p−1
i=1 R(ri) ∪ Z where Z is null, the ri are distinct

elements of {1, . . . , pn−1 − 1}\Z and ri ≡ i mod p for each i .

The proof is similar to the inductive step in section 4; we use (4·2) and (4·3) to show
that if Z is null then

∑
i∈Z ξ

i = ∑
i∈Z ω

i = 0, and Lemma 2·1 to show that O\{pn−1, . . . ,

(p − 1)pn−1} is a union of the sets R(r). Note that since r01 ≡ 0 mod p, and 1 ≤ r01 < pn−1,
Case (i) is relevant only when n ≥ 3. The smallest possible O has size p2 − 1, coming from
Case (ii); this shows Burnside’s claim is false whenever n ≥ 3. The lack of structure in the
solutions, beyond that captured by the sets R(r), suggests that any fix to Burnside’s proof
must involve significant further ideas.

6·2. Burnside’s 1921 paper

In [5], Burnside claimed a ‘remarkably simple’ proof that every abelian group that is not
elementary abelian is a B-group, as conjectured at the end of [6, section 252]. (Of course
Burnside did not use the term ‘B-group’.) The groups Sd � S2 in their primitive action for
d composite, seen in Example 1 below, show that this result is false. In [31, section 15],
D. Manning raised this family of counterexamples and observed ‘the first and most important
part of the proof must contain a serious mistake’.

In today’s language, Burnside considers a permutation group G of degree dd ′ acting
on {0, . . . , d − 1} × {0, . . . , d ′ − 1}, containing a regular subgroup K = 〈gd〉 × 〈g′

d ′ 〉 where
gd = (0, 1, . . . , d − 1) and g′

d ′ = (0, 1, . . . , d ′ − 1). The natural CG-permutation module
M factorizes on restriction to K as 〈e0, . . . , ed−1〉 ⊗ 〈e′

0, . . . , e′
d ′−1〉. Let ζd , ζd ′ ∈ C be
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primitive roots of unity of orders d and d ′, respectively. The analogue of the v j basis element
defined earlier in (3·1) is

v( j, j ′) =
∑

0≤i<d

ζ
−i j
d ei ⊗

∑
0≤i ′<d ′

ζ
−i ′ j ′
d ′ e′

i ′,

where 0 ≤ j < d and 0 ≤ j ′ < d ′. As before, M has a unique decomposition 〈v(0,0)〉 ⊕ V1 ⊕
· · · ⊕ Vt where each irreducible summand Vk has a basis {v( j, j ′) : ( j, j ′) ∈ Bk} for some sub-
set Bk of {0, . . . , d − 1} × {0, . . . , d ′ − 1}. Let φk be the character of Vk . The analogue of
Lemma 3·2 is that if O is an orbit of the point stabiliser H of (0, 0), and 1 ≤ k ≤ t then∑

(i,i ′)∈O
ζ

i j
d ζ

i ′ j ′
d ′ (6·1)

is constant for ( j, j ′) ∈ Bk . Burnside proves this, and also proves (in a similar way) the
dual relation that the character value φk(gi

d g′i ′
d ′ )= ∑

( j, j ′)∈Bk
ζ

i j
d ζ

i ′ j ′
d ′ is constant for (i, i ′) ∈O.

Hence ∑
(i,i ′)∈O

∑
( j, j ′)∈Bk

ζ
i j
d ζ

i ′ j ′
d ′ = |Bk |

∑
(i,i ′)∈O

ζ
i j
d ζ

i ′ j ′
d ′ (6·2)

= |O|
∑

( j, j ′)∈Bk

ζ
i j
d ζ

i ′ j ′
d ′ (6·3)

provided ( j, j ′) ∈ Bk in the right-hand side of (6·2) and (i, i ′) ∈O in the right-hand side
of (6·3). Burnside chooses Bk to contain (d/q, 0) where q is a prime factor of d and O to
contain (1, 0). By taking ( j, j ′)= (d/q, 0) in (6·2) and (i, i ′)= (1, 0) in (6·3) he obtains
|Bk | ∑(i,i ′)∈O ζ

id/q
d = |O| ∑( j, j ′)∈Bk

ζ
j

d = |O|φk(gd), and so

φk(gd)= |Bk |
|O|

∑
(i,i ′)∈O

ωi , (6·4)

where ω= ζ
d/q
d is a primitive root of unity of order q.

The fourth displayed equation on page 484 of [5] claims that φk(g
q
d )= |Bk |, and so gq

d is
in the kernel of φk . It appears that Burnside substitutes gq

d for gd in (6·4), and replaces ω with
ωq . If (6·4) expressed φk(gd) as a sum of eigenvalues, as in (6·3), this would be legitimate.
However this is not the case, and the following example shows that Burnside’s claim is in
general false.

EXAMPLE 1. Let d ∈ N. Let S be the symmetric group on the set {0, 1, . . . , d − 1}. Let
N = S × S and let G ∼= S � C2 be the wreath product N � 〈τ 〉 where τ has order 2 and acts
on N by (g, g′)τ = (g′, g). In the action of G on {0, 1, . . . , d − 1}2, the point stabiliser H
of (0, 0), namely (T × T )� τ where T is the symmetric group on {1, . . . , d − 1}, has two
non-singleton orbits:

{
( j, 0), (0, j) : 1 ≤ j < d

}
and

{
( j, j ′) : 1 ≤ j, j ′ < d

}
. Therefore G

is not 2-transitive. Provided d ≥ 3, H is a maximal subgroup of G, so G is primitive. Let
gd = g′

d = (0, 1, . . . , d − 1). Since 〈gd〉 × 〈g′
d〉 ≤ N acts regularly, Cd × Cd is not a B-group

whenever d ≥ 3.
Let d ≥ 3. The natural permutation character of S is 1S + χ where χ is irreducible. By

the branching rule (see [21, chapter 9] or [20, Lemma 2·3·10]), χ is the unique non-trivial
character of S whose restriction to T contains the trivial character. By the classification
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of irreducible characters of wreath products [20, Theorem 4·3·34], it follows that the irre-
ducible characters of G that contain the trivial character on restriction to H are 1G , φ
and χ ×̃2, where φ = (χ × 1S)↑G

N and χ ×̃2 is the unique character of G whose restriction
to N is χ × χ . By Frobenius reciprocity, the permutation character of M is 1G + φ + χ ×̃2.
Considering restrictions to 〈gd〉 × 〈g′

d〉, we get M = 〈v(0,0)〉 ⊕ 〈v( j,0), v(0, j ′) : 1 ≤ j < d, 1 ≤
j ′ < d〉 ⊕ 〈v( j, j ′) : 1 ≤ j, j ′ < d〉. The second summand has character φ and contains v(1,0)
and v(0,1), so is a faithful CG-module. Thus, contrary to Burnside’s claim, no non-identity
power of gd is in the kernel of φ. Burnside’s conclusion, that G has a proper normal sub-
group containing gq

d holds, since we may take the base group N , but clearly Burnside intends
the normal subgroup to be the kernel of φ, so that Proposition 3·3 can be applied, and the
kernel of φ is trivial.

The penultimate paragraph of Burnside’s paper considers the case where d and d ′ are
distinct primes. This is the hardest part of the paper to interpret: the claims are correct, but
the argument has a significant gap. Burnside has already assumed that G is not 2-transitive. If
a basis set Bk is contained in {(1, 0), . . . , (d − 1, 0)} then, identifying ( j, j ′) with d ′j + d j ′

mod dd ′, Proposition 3·3 implies that G has a normal intransitive subgroup N containing
〈gd〉. This gives the first of Burnside’s claims. While not stated explicitly, it seems that
Burnside then assumes, as he may, that no Bk is contained in {(1, 0), . . . , (d − 1, 0)}. He
makes two further claims, equivalent to the following:

(i) if Bk meets {(1, 0), . . . , (d − 1, 0)} then Bk is a union of sets each of the form{
( j, 0), ( j, 1), . . . , ( j, d ′ − 1)

}
where 1 ≤ j < d;

(ii) there is a set B	 contained in {(0, 1), . . . , (0, d ′ − 1)}.
Clearly (i) implies (ii) and, by Proposition 3·3, (ii) implies that G has a normal intran-
sitive subgroup N containing 〈g′

d ′ 〉. To prove (i), we use the italicised conclusion of the
second paragraph in the proof of Theorem 1·2 in section 5: taking p = d ′, this implies
that Bk is the union of a subset of {(0, 1), . . . , (0, d ′ − 1)} and some sets of the required
form. Since [Q(ζdd ′) : Q(ζd)] = φ(dd ′)/φ(d)= φ(d ′)= [Q(ζd ′) : Q], the stabiliser of ζd in
the Galois group Gal(Q(ζdd ′) : Q) acts transitively on the roots ζd ′, . . . , ζ d ′−1

d ′ . By the
hypothesis in (i) there exists ( j, 0) ∈ Bk . For each r ′ such that 1 ≤ r ′ < d ′ there exists
σ ′ ∈ Gal(Q(ζdd ′) : Q) such that ζ σ

′
d = ζd and ζ σ

′
d ′ = ζ r ′

d ′ . Since vσ
′

( j,0) = v( j,0) and vσ
′

(0,1) = v(0,r ′),
we see that if Bk meets {(0, 1), . . . , (0, d ′ − 1)} then it contains this set; a similar argu-
ment, taking σ ∈ Gal(Q(ζdd ′) : Q) such that ζ σd = ζ r

d and ζ σd ′ = ζd ′ now shows that Bk =
{0, . . . , d − 1} × {0, . . . , d ′ − 1}\{(0, 0)}, and so G is 2-transitive, contrary to assumption.
Therefore (i) holds.

Having proved (i), we instead follow Burnside’s argument for (i) and (ii). Burnside
chooses O to contain (1, 1) and takes (m, 0) ∈ Bk . By (6·2) and (6·3), |O| ∑d ′−1

j ′=0 c j ′ζ
j ′

d ′ =
|Bk | ∑(i,i ′)∈O ζ

im
d , where c j ′ = ∑

j :( j, j ′)∈Bk
ζ

j
d for j ′ ∈ {0, 1, . . . , d ′ − 1}. According to

Burnside, this implies that the coefficients c j ′ are constant for all j ′. It appears that
Burnside assumes that every rational relation between the powers of ζd ′ is a multiple of
1 + ζd ′ + · · · + ζ d ′−1

d ′ . But a more general relation is a + ζd ′ + · · · + ζ d ′−1
d ′ = a − 1, so we

can only conclude that the c j ′ are constant for j ′ ∈ {1, . . . , d ′ − 1}. However, it is true
that if

∑
j∈J ζ

j
d = ∑

j∈K ζ
j

d for non-empty sets J , K ⊆ {0, 1, . . . , d − 1} then J = K , so
this weaker conclusion implies that, for each j ′ ∈ {1, . . . , d ′ − 1}, either { j : ( j, j ′) ∈ Bk} ⊇
{1, . . . , d − 1} or { j : ( j, j ′) ∈ Bk} ⊆ {0}. Hence:
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(i)′ if Bk meets {(1, 0), . . . , (d − 1, 0)} then Bk is a union of sets of the form {( j, 0)}
and {( j, 1), . . . , ( j, d ′ − 1)} where 1 ≤ j < d.

The Galois action of the automorphisms σ in our proof of (i) shows that (i)′ implies (ii).
Therefore Burnside’s argument can be corrected.

The final sentence of the paragraph we have been reading is ‘It is clear that the same
method of proof will apply, when the transitive Abelian subgroup has three or more inde-
pendent generators’. Taking d = 4 in Example 1, we see that the subgroup 〈(0, 1, 2, 3)〉 ×
〈(0, 1)(2, 3), (0, 2)(1, 3)〉 ≤ G acts regularly in the primitive action of G on {0, 1, 2, 3}2.
Therefore C4 × C2 × C2 is not a B-group and Burnside’s claim is false. The use of the Galois
action in the previous paragraph required that both d and d ′ are prime.

In section 6·5 below we extend the correct part of Burnside’s proof to show that if p is an
odd prime and n ∈ N then C2n , C2n p and C2pn are B-groups. A proof of Conjecture 6·3 will
rehabilitate Burnside’s method for cyclic groups.

6·3. Manning’s 1936 paper

In [31], D. Manning claimed a proof, using Burnside’s method, that if p is prime and
a > b then Cpa × Cpb is a B-group. It is reported in [38, page 67] that she later acknowledged
that the critical Lemma II in [31] is false. We extend Example 1 to show this.

EXAMPLE 2. Recall from Example 1 that S is the symmetric group on {0, 1, . . . , d − 1}
and G ∼= S � C2 acting primitively on {0, 1, . . . , d − 1}2. We took gd = g′

d = (0, 1, . . . ,
d − 1). By Example 1, the natural CG-permutation module has a summand with basis set
B = {( j, 0), (0, j ′) : 1 ≤ j < d, 1 ≤ j ′ < d}, with respect to the chosen generators (gd, 1)
and (1, g′

d) of the regular subgroup K = 〈gd〉 × 〈g′
d〉.

We have

v( j,0)(gd, 1)= ζ jv( j,0), v(0, j ′)(gd, 1)= v(0, j ′),

v( j,0)(gd, g′
d)= ζ jv( j,0), v(0, j ′)(gd, g′

d)= ζ j ′
v(0, j ′).

Therefore, with respect to the alternative generators (gd, 1) and (gd, g′
d) of K , the basis

set becomes C = {( j, j) : 1 ≤ j < d} ∪ {(0, j ′) : 1 ≤ j ′ < d}. Observe that, as it must be, C
is invariant under the action induced by Gal(Q(ζd) : Q). Manning’s Lemma II asserts the
stronger property that, given any (i, i ′) ∈ {0, 1, . . . , d − 1}2 with i and i ′ coprime to d, C is
invariant under the permutation ( j, j ′) �→ (i j, i ′ j ′), where the entries are taken modulo d.
Taking i = 1 and i ′ = −1 we see that this is false whenever d > 2.

6·4. Later proofs of Burnside’s and Manning’s claims

In 1908, Schur introduced his method of S-rings and gave the first correct proof of
Theorem 1 [34]. In 1933 Schur extended his method to prove, more generally, that any
cyclic group of composite order is a B-group. As remarked in [31], it appears that Schur
was unaware of Burnside’s 1921 paper. In 1935, Wielandt wrote ‘Der von Herrn Schur
angegebene Beweis ist recht schwerig’, and gave a short proof of the still more general
result that any abelian group of composite order having a cyclic Sylow p-subgroup for
some prime p is a B-group [37]. Wielandt’s proof depends on several results on S-rings,
in particular property (6) in [37], that the stabiliser of an element of an S-ring is itself
in the ring. Wielandt’s result and proof appear, in translation but essentially unchanged,
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in his 1964 textbook [38, Theorem 25·4]. The use of complex conjugation at the end
of the proof of Theorem 1·2 in section 5 involves some similar ideas to the proof of
property (6) in [38, Theorem 23·5], but the proof here is substantially shorter and more
elementary.

The first essentially correct proof of the result claimed by D. Manning was given by
Kochendörffer in 1937 using S-rings [26]; Wielandt comments in [38] that it is ‘very
complicated’ (Bercov’s translation). In his essay in [39], Neumann reports that in an unpub-
lished note D. Manning found some slips in [26], but was able to correct them. Neumann’s
essay includes a proof of Theorem 1·1 that a reader, familiar with the prerequisites from
modular representation theory and permutation groups, will find spectacularly short and
beautiful.

Apart from [25], outlined in the introduction, the three papers [3, 5, 31] surveyed in this
section appear to exhaust the research literature on Burnside’s method. It is intriguing that
all err in ultimately the same way, by overlooking algebraic relations satisfied by roots of
unity.

6·5. Burnside’s method in even degree

Again we continue from the end of section 3. There is an action of the Galois group
Gal(Q(ζd) : Q) on the set {1, . . . , d − 1} under which σ ∈ Gal(Q(ζd) : Q) sends i to i ′ if
and only if σ sends ζ i to ζ i ′

. In [25, Theorem 2·3(2)], Knapp extends Burnside’s arguments
to show that this action induces an action of the Galois group on the orbits of the point
stabiliser H . (This result may also be proved using S-rings: see [38, Theorem 23·9].) Let D
be the set of divisors of d. Set O(1)= {0} and for r ∈ D with r > 1, set

O(r)= {md/r : 0<m < r, hcf(m, r)= 1}.
Thus for each r ∈ D the set {ζ i

d : i ∈O(r)}, consisting of all primitive r th roots of unity,
is an orbit of the Galois group on the powers of ζd . If d is even then, since O(2)= {d/2}
corresponds to ζ d/2

d = −1 ∈ Q, the H -orbit O containing d/2 is invariant under the Galois
action. Hence O = ⋃

r∈E O(r) for some subset E of D. Observe that G is 2-transitive if and
only if E = D\{1}.

For r ∈ D and j ∈ N we have
∑

i∈O(r) ζ
i j
d = ∑

α α
j where α ranges over all primitive r -th

roots of unity. If hcf(r, j)= j 
 then the map α �→ α j is j 
 to 1, and each α j is a primitive
r/j 
-th root of unity. It is well known that the sum of the φ(s) roots of unity of order s is
μ(s), where μ is the Möbius function (see for instance [36, Exercise 2·8]). Therefore, if R
is the matrix with rows and columns indexed by D, defined by

Rrc =μ
( r

hcf(r, c)

) φ(r)

φ( r
hcf(r,c) )

(6·5)

then, for any r ∈ D and j ∈ N,∑
i∈O(r)

ζ
i j
d = Rrc where c = hcf(d, j). (6·6)

(Here R stands for Ramanujan, who considered these cyclotomic sums in [33]; this was
published in the interval between Burnside’s 1901 and 1921 papers, but there is no evidence
that Burnside was aware of its relevance.) As an aide-memoire, we note that Rrc is defined
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by taking cth powers of r th roots of unity. An example of these matrices is given after
Lemma 6·4.

Let ∼E be the relation on D\{d} defined by

b ∼E c ⇐⇒
∑
r∈E

Rrb =
∑
r∈E

Rrc. (6·7)

Let PE be the set of equivalence classes of ∼E . Given B ⊆ {0, 1, . . . , d − 1}, let Y (B)=
{c ∈ D\{d} : B ∩ O(d/c) �=∅}. For example, 1 ∈ Y (B) if and only if B contains a number
coprime to d, and Y ({0})=∅. If Bk and B	 are distinct basis sets then necessarily Bk ∩
B	 =∅, but if neither Bk nor B	 is invariant under the Galois action, we may still have
Y (Bk)∩ Y (B	) �=∅. However the asymmetry between orbits and basis sets in the conclusion
of Lemma 3·2 works in our favour, to show that

∑
r∈E Rrc is constant for c ∈ Y (Bk). It

follows that Y (Bk) is contained in a single part of the partition PE of D\{d}. Hence, by
Proposition 3·3, we may assume that the highest common factor of the entries in each part
of the partition PE of D\{d} is 1. We say that such partitions are coprime.

For c ∈ D, an easy calculation from (6·6) shows that

∑
r∈D

Rrc =
d−1∑
i=0

ζ ic
d = c

d/c−1∑
i=0

ζ i
d/c =

{
0 if c< d,

d if c = d.

Since R1c = 1 for all c ∈ D, it follows that if E = D\{1} then PE = {
D\{d}}. This proves

the ‘if’ direction of the following conjecture.

CONJECTURE 6·3. Let E ⊆ D contain 2. The partition PE of D\{d} defined by the relation
∼E in (6·7) is coprime if and only if E = D\{1} or E = D.

We have shown that if d is even then, defining E as above by the orbit O containing d/2,
the ‘only if’ direction of Conjecture 6·3 implies that E = D\{1} and O = {1, . . . , d − 1},
and so Cd is a B-group.

The following lemma can be used to prove Conjecture 6·3 in several cases of interest. Let
R(d) denote the Ramanujan matrix defined for degree d.

LEMMA 6·4.
(i) Let p be prime and let n ∈ N. We have

R(pn)pe p f =

⎧⎪⎨⎪⎩
0 if f < e − 1,

−pe−1 if f = e − 1,

(p − 1)pe−1 if f ≥ e.

(ii) Let p1, . . . , ps be distinct primes and let n1, . . . , ns ∈ N. We have R(d)=
R(pn1

1 )⊗ · · · ⊗ R(pns
s ).

Proof. Part (i) is immediate from (6·5). For (ii), it suffices to show that if d and d ′ are
coprime and r | d, r ′ | d ′ and c | d, c′ | d ′ then the entry in row rr ′ and column cc′ of R(dd ′)
is Rrc(d)Rr ′c′(d ′). This follows from (6·5) using the multiplicativity of μ and φ, noting that
hcf(r, r ′)= hcf(c, c′)= 1.
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For example, if p is an odd prime then R(2p3) is as shown below, with D ordered
1, 3, 9, 27, 2, 6, 18, 54 and row 2 ∈ E highlighted. The division indicates the tensor fac-
torization R(p3)⊗ R(2).⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
−1 p − 1 p − 1 p − 1 −1 p − 1 p − 1 p − 1
0 −p p(p − 1) p(p − 1) 0 −p p(p − 1) p(p − 1)
0 0 −p2 p2(p − 1) 0 0 −p2 p2(p − 1)

−1 −1 −1 −1 1 1 1 1
1 −(p − 1) −(p − 1) −(p − 1) −1 p − 1 p − 1 p − 1
0 p −p(p − 1) −p(p − 1) 0 −p p(p − 1) p(p − 1)
0 0 p2 −p2(p − 1) 0 0 −p2 p2(p − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In particular R(p3) appears as the top-left block.

PROPOSITION 6·5. Let n ∈ N and let p be an odd prime. Conjecture 6·3 holds when
(i) d = 2n, (ii) d = 2n p and (iii) d = 2pn.

Proof. The ‘only if’ direction remains to be proved. Recall that the rows and columns of R
are labelled by the divisors of d. Since row 1 of R(d) is constant, we may assume that 1 ∈ E .

Suppose, as in (i), that d = 2n . If n = 1 then E = {1, 2} and the conclusion is imme-
diate. Suppose that n ≥ 2. Let R
 be the matrix obtained from R(2n) by deleting row 1
and replacing row 2 with the sum of rows 1 and 2. Observe that column 1 of R
 has all
zero entries, and the submatrix of R
 formed by columns 2 f for 1 ≤ f ≤ n is 2R(2n−1).
Therefore

∑
r∈E R(2n)rc = (1/2)

∑
r∈E
 R(2n−1)rc where E
 = {1} ∪ {r/2 : r ∈ E\{1, 2}}.

By induction E
 = {1, 2, . . . , 2n−1}, and so E = D.
Part (ii) follows by a small extension of this argument. Let R
 be as defined in (i). By

Lemma 6·4, the entry of R
 in row r and column c is odd if and only if r ∈ {p, 2p} and
c = 2m where 0 ≤ m ≤ n. Any coprime partition has a part containing both 2m and p for
some such m. Therefore, by parity, either both p and 2p are contained in E , or neither are.
Deleting row p and replacing row 2p with the sum of rows p and 2p of R
, we obtain
2R(2n−1 p), augmented by two zero columns. The inductive argument for (i) now shows that
E = D.

Finally suppose that d = 2pn . Let R(2pn) denote R(2pn) with entries regarded as ele-
ments of Z/pnZ. Let

�

be the relation on D\{2pn} defined as in (6·7), but working modulo
pn . Let P E denote the set of equivalence classes for

�

. We need this preliminary result:
if P E is coprime then 2, 2p, . . . , 2pn ∈ E and P E has a single part. Again the proof is
inductive. If n = 1 then, by Lemma 6·4,

R(2p)=

⎛⎜⎜⎝
1 1 1 1

−1 −1 −1 −1
−1 −1 1 1
1 1 −1 −1

⎞⎟⎟⎠,
where the entries are in Z/pZ and D is ordered 1, p, 2, 2p. If 2p �∈ E then, since 1, 2 ∈
E , we have P E = {{1, p}, {2, 2p}}, which is not coprime. Therefore 2p ∈ E and P E ={{1, p, 2, 2p}}, as required. Suppose that n ≥ 2. Let R



denote R(2pn) with the entries

taken in Z/pn−1Z. Observe that columns pn−1 and pn of R



are equal, as are columns 2pn−1

and 2pn . Moreover, rows pn and 2pn have all zero entries. By a very similar inductive
argument to (i), it follows that E contains 2, 2p,. . . , 2pn−1. Let R
 be the matrix obtained
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from R(pn) by removing these rows, replacing row 2 with their sum, and adding pe−1 to
each entry in row pe, for 1 ≤ e ≤ n. For example, if n = 3 then

R
 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
0 p p p 0 p p p
p 0 p2 p2 p 0 p2 p2

p2 p2 0 p3 p2 p2 0 p3

0 0 −p2 −p2 0 0 p2 p2

0 0 p2 −p2(p − 1) 0 0 −p2 p2(p − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the row obtained by summation is highlighted. Since columns 1 and 2 of R
 are equal,
and any part of a coprime partition of D\{2pn} contains either 1 or 2, we see that P E has
a single part. The column of R
 labelled 2pn−1 is greater, entry-by-entry, than every other
column, except in rows pn and 2pn . Since columns pn−1 and 2pn−1 of R
 are congruent
except in the summed row and row 2pn , and the sum of entries in these columns is less
than pn , we have 2pn ∈ E . This proves the preliminary result.

We now prove (ii). Each part of P E is a union of parts of PE , so P E is coprime only if P E

is coprime. By the preliminary result, 2, 2p, . . . , 2pn ∈ E . Let R

 be the matrix defined as
R
, but now adding all the rows 2, 2p, . . . , 2pn−1, 2pn . The non-zero entries in the summed
row for R

 are −pn in column pn and pn in column 2pn . Since pn is in a non-singleton part
of PE , we see from column pn that E contains 1, p, . . . , pn , as required.

Despite its elementary statement, the author has been unable to prove Conjecture 6·3 in
any significantly greater generality. We offer this as an open problem.

The HASKELL [32] program RamanujanMatrix on the author’s website1 has been
used to verify Conjecture 6·3 for all degrees d ≤ 600. We mention that

R(pn)=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...
...
...
. . .

...

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
0 p p . . . p
0 0 p2 . . . p2

...
...
...
. . .

...

0 0 0 . . . pn

⎞⎟⎟⎟⎟⎟⎠.

It follows that each R(d) is invertible; the determinant of R(pn) is pn(n+1)/2 and its inverse
is R(pn)◦/pn where R(pn)◦ is obtained from R(pn) by rotation by a half-turn. This leads to
an alternative proof of Proposition 6·5(i) and may be useful more widely.

7. Abelian B-groups

7·1. After CFSG

We now skip over many later developments, referring the reader to Neumann’s essays
in the collected works [7, 39] for some of the missing history, and consider the situation
after the Classification Theorem of Finite Simple Groups. In an early application, it was
used in [12] to determine all 2-transitive permutation groups. The resulting classification
of all primitive permutation groups containing a regular cyclic subgroup is given in [14,
Theorem 4·1] and [24, page 164], and independently refined in [23] and [28]. We state the
version of this result relevant to Theorem 1·1 below. (Here Sd and Ad denote the symmetric
and alternating groups of degree d, respectively; the other notation is also standard.)

1See www.ma.rhul.ac.uk/~uvah099/
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THEOREM 7·1. Let G be a permutation group containing a regular cyclic subgroup 〈g〉
of composite prime-power order pn. Then either G is imprimitive, or G is 2-transitive and
one of the following holds:

(i) G = Apn or G = Spn and g is a pn-cycle;
(ii) PGLd(Fq)≤ G ≤ P�Ld(Fq) where pn = (qd − 1)/(q − 1);

(iii) p = 3, n = 2, G = P�L2(F8) and g = sσ where s ∈ PGL2(F8) is semisimple of order
3 and σ is the automorphism of PGL2(F8) induced by the Frobenius twist.

Corollary 3 of [29] gives a rough classification of primitive permutation groups contain-
ing a regular subgroup. This was sharpened by Li in [27, Theorem 1·1] for regular abelian
subgroups. Note that case (2)(iv) of this theorem, on groups with socle Sm × · · · × Sm or
Am × · · · × Am , is missing the assumption m ≥ 5. It is clear from remark (b) following the
theorem and the structure of the proof in section 5 that this assumption was intended; it
is required to exclude groups such as S2 � Sr and A3 � Sr with regular socle whose product
action is imprimitive. (Primitive groups such as S4 in its natural action or S3 � S2 in its product
action are of affine type, and so already considered in case (1) of the theorem.)

It will be useful to say that a group K is m-factorisable if there exists r ≥ 2 and groups
K1, . . . , Kr such that |K1| = . . .= |Kr | = m and K ∼= K1 × · · · × Kr , and factorisable if it
is m-factorisable for some m ≥ 3.

PROPOSITION 7·2. If K is a regular abelian subgroup of a primitive but not 2-transitive
permutation group G then either:

(i) G = V � H where V ∼= Fn
p is elementary abelian, the point stabiliser H ≤ GL(V )

acts irreducibly on V but intransitively on V \{0} and |K | = pn ; or
(ii) K is m-factorisable for some m ≥ 5.

Proof. If case (1) of Li’s Theorem [27] applies then G ≤ AGLd(Fp) where p is prime and
G acts on its socle V ∼= Fd

p. It is easy to show (see for example [13, Theorem 4·8]) that
G = V � H where H ≤ GL(V ) is irreducible. Since G is not 2-transitive, H is not transi-
tive. In the remaining case of Li’s theorem, G is of the form (T̃1 × · · · × T̃r ).O.P where
O ≤ Out(T̃1)× · · · × Out(T̃r ), P is transitive of degree r and each T̃r is an almost simple
permutation group of degree m ≥ 5. Moreover K = K1 × · · · × Kr where Ki < T̃i and each
Ki has order m. Therefore, if r ≥ 2, then K is factorisable into m-subgroups with m ≥ 5. If
r = 1 then, as Li remarks following his theorem, G is 2-transitive, so need not be considered
any further.

Note that, as we discuss in section 7·3, it is not necessarily the case that the subgroup K
in case (i) is elementary abelian.

Theorem 25·7 in [38] generalises example 1 to show that if m ≥ 3 and K is m-factorisable
with r factors then K is a regular subgroup of Sm � Sr in its primitive action on {1, . . . , k}r .
This action is not 2-transitive, so K is not a B-group. We therefore have the following
corollary, first observed in [27, Corollary 1·3].

COROLLARY 7·3. No factorisable group is a B-group. Moreover, an abelian group not
of prime-power order is a B-group if and only if it is not factorisable.

It is an open problem to determine the non-factorisable abelian B-groups of prime-power
order. We end with some partial results and reductions.
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7·2. Elementary abelian B-groups

Exercise 3·5·6 in [13] asks for a proof that Cn
p is never a B-group. This is true when

p> 2 by Corollary 7·3 (clearly Cp in its regular action is primitive but not 2-transitive),
but false, in general, when p = 2.2 For example, the primitive permutation groups of degree
8 containing a regular subgroup isomorphic to C3

2 are A8, S8 and the affine groups F3
2 �

C7, F3
2 � (C7 � C3) and F3

2 � GL3(F2). All of these groups contain a 7-cycle, and so are
2-transitive. Therefore C3

2 is a B-group.
These examples motivate the following lemma, whose proof requires Burnside’s

dichotomy on permutation groups of prime degree. The significance of Mersenne primes
will be seen shortly.

LEMMA 7·4. Let V = Fn
2 where 2n − 1 is prime. A subgroup H ≤ GL(V ) is transitive on

V \{0} if and only if H ∼= C2n−1, H ∼= C2n−1 � Cn or H = GL(V ).

Proof. The ‘if’ direction is clear. By Theorem 6·1, if H is transitive on V \{0} then either
H ∼= C2n−1 � Cr , for some r , or H is 2-transitive. Identifying V \{0} with F×

2n , we see that
there exists h ∈ H of order 2n − 1. (Such elements are called Singer cycles.) Let α be a
primitive (2n − 1)th root of unity. Note that h is conjugate to hs in GL(V ) if and only if
the map β �→ βs permutes the eigenvalues α, α2, . . . , α2n−1

of h. Thus NGL(V )(〈h〉)∼= Cn is
generated by an element of prime order n conjugating h to h2, and either r = 1 or r = n. If
H is 2-transitive then V � H is 3-transitive. Such groups were classified by Cameron and
Kantor in [9]. By [9, Theorem 1] in the case of vector spaces over F2, the only such groups
are V � GL(V ) and, when n = 4, V � A7. Since 24 − 1 is composite, only the former case
arises.

It is worth noting that [9] predates the classification theorem; the methods used are mainly
from discrete geometry rather than group theory. More generally, Hering [16, 17] has clas-
sified the linear groups H transitive on non-zero vectors, under various assumptions on the
composition factors of H .

PROPOSITION 7·5. Let V = Fn
2 . The elementary abelian group Cn

2 is a B-group if and only
if 2n − 1 is a Mersenne prime and the only simple irreducible subgroups of GL(V ) are C2n−1

and GL(V ).

Proof. Suppose that 2n − 1 is composite. Let h ∈ GL(V ) be a Singer cycle. If n �= 6 then, by
Zsigmondy’s Theorem [40], there exist a prime r such that r divides 2n − 1 and r does not
divide 2m − 1 for any m < n. Thus hn/r does not permute the vectors of a non-zero proper
subspace of V , and so 〈hn/r 〉 acts irreducibly on V and intransitively on V \{0}. Therefore
V � 〈hn/r 〉 is primitive but not 2-transitive, and so Cn

2 is not a B-group. In the exceptional
case of Zsigmondy’s Theorem when n = 6, we simply take h3, of order 21.

Suppose that 2n − 1 is prime and that there is a simple irreducible group T ≤ GL(V )
other than C2n−1 and GL(V ). By Lemma 7·4, T is intransitive on V \{0}, and so V � T is
not 2-transitive. Hence Cn

2 is not a B-group. Conversely, assume that no such simple group
exists, and, for a contradiction, that Cn

2 is not a B-group. By Proposition 7·2, there exists a

2This mistake is corrected in the errata available at people.math.carleton.ca/~jdixon/
Errata.pdf.
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proper irreducible subgroup H of GL(V ) such that H is intransitive on V \{0}. Let M be
a maximal subgroup of GL(V ) containing H . The maximal subgroups of classical groups
were classified by Aschbacher in [1]. Of the 11 Aschbacher classes, the first consists of
reducible groups, and the remaining 10 of groups preserving a structure on V that can exist
only when V has composite dimension. Therefore M is an almost simple group. Since M is a
proper subgroup of GL(V ), Lemma 7·4 implies that M is intransitive on V \{0}. Let T be the
simple normal subgroup of M . By Clifford’s Theorem ([11, Theorem I]), the restriction of V
to T decomposes as a direct sum of irreducible representations of T of the same dimension.
Since n is prime, T acts irreducibly on V . Its orbits are contained in the orbits of M , so it
acts intransitively on V \{0}, contrary to our assumption.

By Proposition 7·5, a solution to the following problem will imply that Cn
2 is a B-group if

and only if 2n − 1 is a Mersenne prime.

PROBLEM 7·6. Show that if 2n − 1 is a Mersenne prime and n ≥ 3 then no non-abelian
finite simple group other than GLn(F2) has an irreducible representation of dimension n
over F2.

The two remarks below give some partial progress on Problem 7·6.

(1) The Atlas [22] data available in GAP [15] shows that, with the possible exceptions of
J4, Ly, T h, Fi24, B and M , no sporadic simple group has an irreducible representa-
tion over F2 of dimension n where 2n − 1 is a Mersenne prime. Indeed, it appears to
be rare for a sporadic group or a finite group of Lie type to have a non-trivial irre-
ducible representation over F2 of odd dimension. The author knows of no examples
of such representations of alternating groups. Since a self-dual representation has an
invariant alternating form, whereas an odd-dimensional orthogonal group over F2 has
a 1-dimensional invariant subspace, such a representation is necessarily not self-dual.

(2) Inspection of tables of small dimensional representations of quasisimple groups
[18, 19] and (for the groups deliberately excluded therein), Chevalley groups in
defining characteristic [30] show that no finite simple group except for GLn(F2)

has an irreducible representation over F2 of dimension n ≤ 250 such that 2n − 1 is
a Mersenne prime. Thus if n ≤ 250 then Cn

2 is a B-group if and only if

n ∈ {1, 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127}.
7·3. Non-elementary abelian B-groups

An interesting feature of the affine groups in Proposition 7·2(i) is that they may contain
regular abelian subgroups other than Cn

p. In [27, Remark 1·1], Li gives the example V � Sn

where V is the subrepresentation 〈e2 − e1, . . . , en − e1〉 of the natural permutation repre-
sentation 〈e1, . . . , en〉 of Sn over Fp. To avoid a potential ambiguity, let tv ∈ V � H denote
translation by v ∈ V . If 2s < n then the subgroup of V � H generated by

(2, 3)te1+e2, . . . , (2s, 2s + 1)te1+e2s , te2s+2, . . . , ten

is regular and isomorphic to Cs
4 × Cn−2s−1

2 . Li claims that V � H is primitive. However H
acts irreducibly only when n is odd (and so dim V is even, as expected by Remark (1) above).
Thus if r ∈ N0 and s ∈ N then Cs

4 × C2r
2 is not a B-group, but Li’s example sheds no light on
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when Cs
4 × C2r+1

2 , which may be non-factorizable, is a B-group. This is a special case of the
following problem.

PROBLEM 7·7. Classify non-elementary abelian B-groups of prime-power order.

By Proposition 7·2, this problem reduces to classifying regular abelian subgroups of affine
groups V � GL(V ). The main result of [10] is a beautiful bijective correspondence between
such subgroups and nilpotent algebras with underlying vector space V . To explain part of
this correspondence, observe that if K is an regular abelian subgroup of V � H where
H ≤ GL(V ) then, for each v ∈ V , there exists a unique hv ∈ H such that hvtv ∈ K . From
huhvtuhv+v = hutuhvtv = hvtvhutu = hvhutvhu+u for u, v ∈ V , we see that {hv : v ∈ V } is an
abelian subgroup of H and uhv + v= vhu + u for all u, v ∈ V . Replacing v with v +w, we
obtain

uhv+w + (v+w)= (v+w)hu + u = vhu +whu + u = uhv + v+ uhw +w− u

and so, cancelling v+w and subtracting u, we have

hv+w − 1 = (hv − 1)+ (hw − 1) (7·1)

for all v, w ∈ K . This additivity property is highly restrictive.

EXAMPLE 3. Let K = {hvtv : v ∈ V } be a regular abelian subgroup of V � Sn , where
V is as in Li’s example. The matrix X representing hv in the basis e2 − e1, . . . , en − e1

of V is a permutation matrix if and only if 1hv = 1. If 1hv = a and bhv = 1 then, since
(ei − e1)hv = (eihv − 1)− (ea − 1), each entry of X in column ea − e1 is −1, row ei − e1

has a 1 in column eihv − e1 for each i �= b, and X has no other non-zero entries. By (7·1),
h2v = 2hv − 1, so h2v is represented by 2X − I , where I is the identity matrix. But 2X − I is
not of either of these forms unless p = 2 or X = I . Therefore V is the unique regular abelian
subgroup of V � Sn if p> 2. Suppose that p = 2. If hv has order 4 or more, the matrix
representing hv + h−1

v + 1 has multiple non-zero entries in the columns for both ea − e1 and
eb − e1, again contradicting (7·1). Therefore each hv has order at most 2. It follows that K
has exponent 2 or 4. Thus the examples given by Li are exhaustive.

When p divides n the representation V has an irreducible quotient U = V/〈e1 + · · · + en〉.
Similar arguments show that U � Sn has a non-elementary abelian regular subgroup if and
only if p = 2. Any such subgroup has exponent 4, with the exception that when n = 6, U �
S6 has an regular abelian subgroup isomorphic to C8 × C2. This does not contradict the result
first claimed by Manning (see section 6·3) since in this case S6 acts transitively on U\{0};
the related 2-transitive action of A7 on F4

2, coming from the isomorphism A8
∼= GL4(F2),

was seen in the proof of Lemma 7·4.
We end with some consequences of the following observation: if J is the m × m unipotent

Jordan block matrix over Fp then J pr = I if and only if pr ≥ m and I + J + · · · + J pr −1 = 0
if and only if pr >m. (The latter can be proved most simply using the identity I + J + · · · +
J pr −1 = (J − I )pr −1.)

PROPOSITION 7·8. Let V = Fn
p and let K be a regular abelian subgroup of V � GL(V ).

(i) If n < p then K ∼= Cn
p.

(ii) If K ∼= Cpn then either n = 1 or p = 2 and n = 2.
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Table I. All abelian B-groups of composite prime-power degree d where d ≤ 255; f (d) is the

number of primitive permutation groups of degree d that are not 2-transitive

d pn f (d) abelian B-groups of order d

4 22 0 C2
2 , C4

8 23 0 C3
2 ,C4 × C2,C8

9 32 2 C9
16 24 9 C8 × C2, C16
25 52 17 C25
27 33 9 C9 × C3, C27

32 25 0 C5
2 ,C4 × C3

2 ,C2
4 × C2,C8 × C2

2 ,C8 × C4,C16 × C2,C32

49 72 29 C49
64 26 55 C16 × C2

2 , C16 × C4, C32 × C2, C64
81 34 125 C27 × C3,C81
121 112 43 C121
125 53 38 C25 × C5,C125

128 27 0 C7
2 ,C4 × C5

2 ,C2
4 × C3

2 ,C4 × C5
2 ,C8 × C4

2 ,C8 × C4 × C2
2 ,C8 × C2

4 ,

C2
8 × C2,C16 × C3

2 ,C16 × C4 × C2,C16 × C8,C32 × C2
2 ,C32 × C4,

C64 × C2,C128
169 132 64 C169
243 35 30 C9 × C3

3 , C9 × C9 × C3, C27 × C2
3 ,C27 × C9,C81 × C3,C243

Proof. For hvtv ∈ K we have (hvtv)pr = h pr

v tw where w= v+ vhv + · · · + vh pr −1
v . Hence,

using the observation just made, if n < p then (hv − 1)p = 0 and so h p
v = 1 and (hvtv)p = 1,

giving (i). Now suppose that hvtv generates K . Since (hvtv)pn−1 �= 1, we have v+ vhv +
· · · + vh pn−1−1

v �= 0. Hence there is a m × m unipotent Jordan block in hv with m ≥ pn−1.
Therefore n ≥ pn−1 which implies (ii).

The subgroups K in Proposition 7·8(i) may be classified up to conjugacy in the affine
group using the theory in [10]. Using Proposition 7·8(i) to rule out degrees, it follows from
an exhaustive search through the library of primitive permutation groups in MAGMA [2]
that the abelian B-groups of composite prime-power degree d where d ≤ 255 are precisely
those listed in Table I above. Finally we remark that Proposition 7·2 and Proposition 7·8(ii)
together imply that Cpn is a B-group for all primes p and all n ∈ N with n ≥ 2, giving one
final proof of Theorem 1·1.

Acknowledgements. I thank Nick Gill for his answer to a MathOverflow question
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John Britnell and Peter M. Neumann for helpful comments.

REFERENCES

[1] M. ASCHBACHER. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984),
469–514.

[2] W. BOSMA, J. CANNON and C. PLAYOUST. The Magma algebra system. I. The user language.
J. Symbolic Comput. 24 (1997), 235–265. Computational Algebra and Number Theory (London,
1993).

[3] W. BURNSIDE. On some properties of groups of odd order. Proc. London Math. Soc. 33 (1901),
162–185.

https://doi.org/10.1017/S0305004119000033 Published online by Cambridge University Press

mathoverflow.net/questions/258434/
https://doi.org/10.1017/S0305004119000033


632 MARK WILDON

[4] W. BURNSIDE. On simply transitive groups of prime degree. Q. J. Math. 37 (1906), 215–221.
[5] W. BURNSIDE. On certain simply-transitive permutation-groups. Proc. Camb. Phil. Soc. 20 (1921),

482–484.
[6] W. BURNSIDE. Theory of Groups of Finite Order (Dover Publications Inc., New York, 1955), (reprint

of 2nd edition, Cambridge University Press, 1911).
[7] W. BURNSIDE. The collected papers of William Burnside. Vol. I (Oxford University Press, Oxford,

2004). Commentary on Burnside’s life and work; papers 1883–1899, edited by Peter M. Neumann,
A. J. S. Mann and Julia C. Tompson, with a preface by Neumann and Mann.

[8] W. BURNSIDE. The collected papers of William Burnside. Vol. II (Oxford University Press, Oxford,
2004). papers 1900–1926, edited by Peter M. Neumann, A. J. S. Mann and Julia C. Tompson, with a
preface by Neumann and Mann.

[9] P. J. CAMERON and W. M. KANTOR. 2-transitive and antiflag transitive collineation groups of finite
projective spaces, J. Algebra 60 (1979), 384–422.

[10] A. CARANTI, F. D. VOLTA and M. SALA. Abelian regular subgroups of the affine group and radical
rings, Publ. Math. Debrecen 69 (2006), 297–308.

[11] A. H. CLIFFORD. Representations induced in an invariant subgroup, Ann. of Math. (2) 38 (1937),
533–550.

[12] C. W. CURTIS, W. M. KANTOR and G. M. SEITZ. The 2-transitive permutation representations of the
finite Chevalley groups. Trans. Amer. Math. Soc. 218 (1976), 1–59.

[13] J. D. DIXON and B. MORTIMER. Permutation groups. Graduate Texts in Math. vol. 163 (Springer-
Verlag, New York, 1996).

[14] W. FEIT. Some consequences of the classification of finite simple groups. The Santa Cruz Conference
on Finite Groups (Univ. California, Santa Cruz, Calif., 1979). Proc. Sympos. Pure Math., vol. 37
(Amer. Math. Soc., Providence, R.I., 1980), pp. 175–181.

[15] THE GAP GROUP. GAP – Groups, Algorithms and Programming, Version 4·7·4, (2014).
[16] C. HERING. Transitive linear groups and linear groups which contain irreducible subgroups of prime

order. Geom. Dedicata 2 (1974), 425–460.
[17] C. HERING. Transitive linear groups and linear groups which contain irreducible subgroups of prime

order. II J. Algebra 93 (1985), 151–164.
[18] G. HISS and G. MALLE. Low-dimensional representations of quasi-simple groups, LMS J. Comput.

Math. 4 (2001), 22–63.
[19] G. HISS and G. MALLE. Corrigenda: Low-dimensional representations of quasi-simple groups, LMS

J. Comput. Math. 5 (2002), 95–126.
[20] G. JAMES and A. KERBER. The representation theory of the symmetric group. Encyclopedia Math.

Appli. vol. 16 (Addison-Wesley Publishing Co., Reading, Mass., 1981).
[21] G. D. JAMES. The representation theory of the symmetric groups. Lecture Notes in Math. vol. 682

(Springer, Berlin, 1978).
[22] C. JANSEN, K. LUX, R. PARKER and R. WILSON. An atlas of Brauer characters. London Math.

Soc. Monogr. New Series, vol. 11 (The Clarendon Press, Oxford University Press, New York, 1995).
Appendix 2 by T. Breuer and S. Norton (Oxford Science Publications).

[23] G. A. JONES. Cyclic regular subgroups of primitive permutation groups. J. Group Theory 5 (2002),
403–407.

[24] W. M. KANTOR. Some consequences of the classification of finite simple groups. Finite groups—
coming of age (Montreal, Que., 1982) Contemp. Math., vol. 45 (Amer. Math. Soc., Providence, RI,
1985), pp. 159–173.

[25] W. KNAPP. On Burnside’s method. J. Algebra 175 (1995), 644–660.
[26] R. KOCHENDÖRFFER. Untersuchungen über eine Vermutung von W. Burnside. Schriften des math-

ematischen Seminars und des Instituts für angewandtemathematik der Universität Berlin. 3 (1937),
155–180.

[27] C. H. LI. The finite primitive permutation groups containing an abelian regular subgroup. Proc.
London Math. Soc. (3) 87 (2003), 725–747.

[28] C. H. LI. Permutation groups with a cyclic regular subgroup and arc transitive circulants. J. Algebraic
Combin. 21 (2005), 131–136.

[29] M. W. LIEBECK, C. E. PRAEGER and J. SAXL. Transitive subgroups of primitive permutation groups.
J. Algebra 234 (2000), 291–361.

[30] F. LÜBECK. Small degree representations of finite Chevalley groups in defining characteristic. LMS
J. Comput. Math. 4 (2001), 135–169.

[31] D. MANNING. On simply transitive groups with transitive abelian subgroups of the same degree.
Trans. Amer. Math. Soc. 40 (1936), 324–342.

[32] S. P. JONES et al. The Haskell 98 language and libraries: The revised report J. Functional
Programming 13 (2003), 0–255, http://www.haskell.org/definition/.

https://doi.org/10.1017/S0305004119000033 Published online by Cambridge University Press

http://www.haskell.org/definition/
https://doi.org/10.1017/S0305004119000033


Permutation groups containing a regular abelian subgroup 633

[33] S. RAMANUJAN, On certain trigonometrical sums and their applications in the theory of numbers,
Trans. Camb. Phil. Soc. 22 (1918), 259–276.

[34] I. SCHUR. Neuer Beweis eines Satzes von W. Burnside. Jahresbericht der Deutschen Mathematik-
Vereinigung 17 (1908).

[35] O. TAMASCHKE. Zur Theorie der Permutationsgruppen mit regulärer Untergruppe. I. Math. Zeit. 80
(1963) 328–354.

[36] L. C. WASHINGTON. Introduction to cyclotomic fields, second ed. Graduate Texts in Math, vol. 83
(Springer-Verlag, New York, 1997).

[37] H. WIELANDT. Zur Theorie der einfach transitiven Permutationsgruppen. Math. Z. 40 (1936),
582–587.

[38] H. WIELANDT. Finite Permutation Groups. Translated from the German by R. Bercov (Academic
Press, New York-London, 1964).

[39] H. WIELANDT. Mathematische Werke/Mathematical works. Vol. 1 (Walter de Gruyter & Co., Berlin,
1994). Group theory with essays on some of Wielandt’s works by G. Betsch, B. Hartley, I. M. Isaacs,
O. H. Kegel and P. M. Neumann Edited with a preface by Bertram Huppert and Hans Schneider.

[40] K. ZSIGMONDY. Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265–284.

https://doi.org/10.1017/S0305004119000033 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000033

	Permutation groups containing a regular abelian subgroup: the tangled history of two mistakes of Burnside
	Introduction
	Lemma on cyclotomic integers
	Burnside's method: preliminary results
	Proof of Theorem 11
	Proof of Theorem 12
	A historical survey of Burnside's method and B-groups
	Burnside's work for prime-power degree
	Burnside's 1921 paper
	Manning's 1936 paper
	Later proofs of Burnside's and Manning's claims
	Burnside's method in even degree

	Abelian B-groups
	After CFSG
	Elementary abelian B-groups
	Non-elementary abelian B-groups




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


