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The transition to turbulence in Taylor–Couette flow often occurs via a sequence of
supercritical bifurcations to progressively more complex, yet stable, flows. We describe
a subcritical laminar–turbulent transition in the counter-rotating regime mediated by
a transient intermediate state in a system with an axial aspect ratio of Γ = 5.26
and a radius ratio of η = 0.905. In this regime, flow visualization experiments and
numerical simulations indicate the intermediate state corresponds to an aperiodic flow
featuring interpenetrating spirals. Furthermore, the reverse transition out of turbulence
leads first to the same intermediate state, which is now stable, before returning to
an azimuthally symmetric laminar flow. Time-resolved tomographic particle image
velocimetry is used to characterize the experimental flows; these measurements
compare favourably to direct numerical simulations with axial boundary conditions
matching those of the experiments.
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1. Introduction

The transition to turbulence in many flows falls into two classes: subcritical
transitions, whereby the transition is directly from laminar flow to turbulence, or
supercritical transitions, where the transition occurs through a sequence of intermediate
stable flow states before ultimately ending in turbulence. By describing well the
growth of infinitesimal disturbances, linear stability theory has often enabled good
predictions of the critical Reynolds numbers at which supercritical transitions occur.
By contrast, subcritical transitions result from the nonlinear growth of finite amplitude
perturbations; therefore, linear stability analyses provide little insight into this type
of transition. Subcritical transitions exhibit hysteresis, in which the turbulent flow
returns back to the laminar state at a Reynolds number that is lower than that for the
transition from laminar flow to turbulence.

† Email address for correspondence: chris.crowley@gatech.edu
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FIGURE 1. In Taylor–Couette flow, a fluid is confined between coaxial cylinders of radii
ri and ro, which counter-rotate with angular velocities ωi and ωo, respectively. In the axial
direction, the flow is bounded by two end caps that rotate with the outer cylinder and are
separated by a distance h. In the radial direction, the separation between the cylinders is
d= ro − ri. The flow is periodic in the azimuthal direction.

Both super- and subcritical turbulent transitions can be observed in the flow
between two independently rotating, coaxial cylinders, or Taylor–Couette flow (TCF)
(see figure 1). TCF can be uniquely characterized by four non-dimensional parameters.
Two parameters characterize the geometry of the system: the radius ratio η = ri/ro,
where ri and ro are the radii of the inner and outer cylinders, respectively, and the
aspect ratio Γ = h/d, where d = ro − ri is the radial separation distance between the
cylinders and h is the axial height of the flow domain. The other two parameters, the
inner and outer Reynolds numbers Rei,o, describe the cylinders’ rotation rates and are
given by

Rei,o =
ri,oωi,o d
ν

, (1.1)

where ν is the kinematic viscosity of the fluid and ωi,o are the angular velocities of
the inner and outer cylinders, respectively. By convention Rei is always taken to be
positive, whereas Reo is positive when the cylinders are co-rotating and negative when
they are counter-rotating.

Numerous studies of supercritical transitions to turbulence in TCF have been
published (see, e.g. Coles (1965), Andereck, Liu & Swinney (1986), Tagg (1994)
and Meseguer et al. (2009b)). Experimental studies mostly focus on geometries with
Γ � 1 to reduce the influence of the axial boundaries on the flow and investigate
transition at fixed Reo while quasi-statically increasing Rei. In this parameter regime,
TCF exhibits a multitude of stable non-turbulent flow states for different rotation rates
(Coles 1965; Andereck et al. 1986). As Rei is increased, each new transition typically
yields a flow of increased complexity until the flow eventually becomes turbulent.
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The subcritical transition to turbulence in TCF has a long history (Couette 1890;
Mallock 1896; Wendt 1933; Taylor 1936a,b; Schultz-Grunow 1959; Coles 1965; Van
Atta 1966; Andereck et al. 1986; Prigent & Dauchot 2005). Recently, there has
been renewed interest in this regime as a testbed for ideas explaining the subcritical
transition to turbulence from the viewpoint of dynamical systems theory (Meseguer
et al. 2009a; Borrero-Echeverry, Schatz & Tagg 2010; Avila & Hof 2013; Maretzke,
Hof & Avila 2014; Lopez 2016) and as a model for understanding the source of
the enhanced angular momentum transport observed in astrophysical disks, which
is purportedly caused by turbulence despite the predicted stability of these flows
(Richard & Zahn 1999; Ji et al. 2006; Paoletti & Lathrop 2011; Burin & Czarnocki
2012; Edlund & Ji 2014). In these studies, which were mostly conducted with Γ � 1,
transition is typically observed to take place directly from the laminar base flow.

The subcritical transition to turbulence is commonly associated with wall-bounded
shear-driven flows in channels, pipes and boundary layers in which two general
transition scenarios have been identified: (i) an ‘amplification’ scenario involving
transient non-turbulent modes (Reshotko 1976) and (ii) a ‘bypass’ transition
(Morkovin 1985). In the amplification scenario, the transition begins with the
appearance of a weak structured flow (e.g. Tollmien–Schlichting waves in channel
flow), which undergoes amplification by linear mechanisms until it is sufficiently
large that nonlinearity takes over, and the flow breaks up into turbulence. In this
scenario, the unstable structured flow acts as a transient intermediary that triggers
turbulence. Operationally, the amplification transition is observed by imposing
carefully controlled disturbances in flows where the ambient free-stream turbulent
intensities are sufficiently low (Nishioka, Iida & Ichikawa 1975). In contrast, in the
bypass transition scenario, the free-stream turbulent intensity is sufficiently large that
non-turbulent structured flows are not observed (are ‘bypassed’) and, for sufficiently
large Re, the transition occurs from featureless laminar flow directly to disordered
turbulent flow. Earlier studies of the subcritical transition to turbulence in TCF, which
were mostly conducted at large aspect ratios, showed that this transition typically
occurs directly from the laminar base flow, i.e. via the bypass mechanism.

Here, we report a subcritical transition to turbulence in counter-rotating TCF that
has some features in common with the amplification scenario found in prior work
on other wall-bounded shear flows. In our TCF studies, a non-turbulent intermediary
flow plays a central role in the transition. This aperiodic flow features interpenetrating
spirals (IPS) with opposite helicity much akin to those that have been discovered by
Andereck et al. (1986) at large Γ and further investigated by Coughlin & Marcus
(1996). At a moderate value of Γ = 5.26, we find that IPS appear transiently in the
transition from laminar to turbulent flow as Rei is increased at fixed Reo. If Rei is then
decreased, the turbulent flow transitions to stable IPS, which persist over a range of
Rei. As Rei is decreased further, stable IPS eventually transition back to laminar flow.

It is important to note that both super- and subcritical transitions have been
examined in earlier studies of TCF with small-to-moderate aspect ratios (Γ . 5). A
rich variety of phenomena have been observed, including a plethora of asymmetric
states from symmetric end cap forcing (Tavener, Mullin & Cliffe 1991), a sequence
of period doubling bifurcations (Pfister et al. 1988) and quasi-periodic dynamics with
three frequencies (Lopez & Marques 2003). These examples and many others from
prior work describe transitions to non-turbulent flows, distinct from the transition to
turbulence reported here.
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In § 2, we outline briefly the experimental and numerical methods used in this study.
Then, in § 3, we discuss the transitions between flow states with a particular emphasis
on the role of the IPS. In § 4, we discuss the implications of this discovery for
understanding of the subcritical transition to turbulence in TCF and, more generally,
in wall-bounded shear flows; we conclude in § 5.

2. Methods

Our TCF apparatus with η = 0.905 was composed of a glass outer cylinder with
a radius of ro = 80.03 ± 0.02 mm and a brass inner cylinder of radius ri = 72.39 ±
0.01 mm with a black powder coat to enhance optical contrast in flow visualization
studies. The aspect ratio, Γ = 5.26, was set by two end caps, separated axially by
h= 40.2± 0.05 mm and attached to rotate with the outer cylinder. The cylinders were
driven by stepper motors; to reduce vibration and to ensure uniform cylinder rotation,
timing belts connected the cylinders to the motors, which were mounted separately
from the TCF apparatus. Additionally, a transmission with a gear ratio of 28 : 1 was
used with the inner cylinder stepper motor to increase the resolution in Rei. While the
cylinders were rotating, the rate of temperature variations in the flow was kept below
0.5 ◦C throughout the duration of the experiments by surrounding the outer cylinder
with a liquid bath. With these measures, the total systematic uncertainty for Rei and
Reo was below 1 %.

The flow was characterized using rheoscopic flow visualization. In some studies,
the working fluid was water mixed with Kalliroscope (Matisse & Gorman 1984)
at a concentration of 0.3 % by volume and had a kinematic viscosity of ν =

1.01 mm2 s−1 at 20 ◦C. Other studies were carried out using a mixture of water and
a stearic-acid-based rheoscopic fluid (Borrero-Echeverry, Crowley & Riddick 2018)
at a concentration of 5 % by volume with kinematic viscosity ν = 1.03 mm2 s−1

at 20 ◦C. The flows were illuminated using fluorescent lights and imaged using a
single Microsoft LifeCam HD webcam oriented perpendicular to the flow domain
and connected via a USB interface to a computer. The resulting digital images were
analysed using a custom Matlab script to identify qualitative changes in the flow as a
function of Reynolds number and indicate transitions in the flow. For each image, the
script counted the total number of pixels with an intensity above a fixed threshold;
different flow states exhibited different, easily distinguishable pixel counts.

Tomographic particle image velocimetry (tomo PIV) (Elsinga et al. 2006) was also
used to perform flow measurements. In tomo PIV, particles suspended in the flow
are imaged simultaneously by multiple cameras at different viewing angles, and the
images are used to reconstruct the light intensity distribution in a three-dimensional
(3-D) flow volume; 3-D cross-correlation of distributions reconstructed at different
times enables determination of 3-D velocity fields throughout a flow volume with an
approximate size of d radially, 0.75h axially and 2πro/10 azimuthally. The velocity
fields were determined using correlation volumes with 75 % overlap that resulted
in a grid of velocity vectors with a spacing of 250 µm between neighbouring
vectors and a noise level of approximately 2.5 % of the outer cylinder wall speed.
Custom-made, density-matched polyester particles (25 µm–32 µm in diameter) were
doped with Rhodamine 6G and suspended in the flow. The particles were illuminated
with a Quantronix 527/DP-H Q-switched Nd:YLF laser. Fluorescent light emitted
from the particles was collected by four Vision Research Phantom V210 high
speed cameras synchronized with the laser illumination. Each camera was fitted
with a 105 mm Nikon Nikkor fixed focal length lens attached via a Scheimpflug
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adapter (LaVision Inc.). A low pass optical filter (Semrock BLP01-532R-25) on
each camera lens attenuated, by a factor of 107, the scattered 527 nm wavelength
laser illumination and passed, with 80 % efficiency, fluorescent light at wavelengths
>532 nm. The images were then analysed using LaVision Inc.’s DaVis tomographic
PIV software package. To reduce optical distortion from the outer cylinder’s curved
surfaces, the index of refraction of both the working fluid and the bath liquid were
matched to the index of refraction of the glass outer cylinder. Index matching of the
working fluid was achieved by using an ammonium thiocyanate solution prepared
with a specific gravity of 1.13 and a kinematic viscosity of ν= 1.37 mm2 s−1 at 23 ◦C
(Borrero-Echeverry & Morrison 2016). A small amount of ascorbic acid was added to
the ammonium thiocyanate solution to mitigate reaction with trace metals (Sommeria,
Meyers & Swinney 1991). Index matching of the bath liquid was achieved by a
binary mixture of two mineral oils with a 68.8 % heavy viscosity oil (McMaster-Carr
part no. 3190K632) to 31.2 % light viscosity oil (McMaster-Carr part no. 3190K629)
ratio. Further details about the implementation of tomo PIV measurements in our
TCF apparatus are reported elsewhere (Borrero-Echeverry 2014).

Fully resolved direct numerical simulations (DNS) of TCF were conducted using the
code developed by Avila and his collaborators (Avila et al. 2008; Mercader, Batiste
& Alonso 2010; Avila 2012). This code uses a pseudospectral scheme to solve the
Navier–Stokes equation in cylindrical coordinates (r, θ, z) subject to physical (no-slip)
boundary conditions at the surface of the rotating concentric cylinders and top and
bottom end caps. The geometry of the simulation was chosen to match that of the
experimental apparatus. The simulations used Nr = 20 Chebyshev modes in the radial
direction, Nz = 100 Chebyshev modes in the axial direction and Nθ = 1280 Fourier
modes in the azimuthal direction, so that the velocity field v at a point (r, θ, z) and
time t is given by

v(r, θ, z, t)=Re
Nr∑

k=0

Nz∑
n=0

Nθ /2∑
m=0

Vknm(t)Tk(x)Tn(y)eimθ , (2.1)

where x= (2r− ri− ro)/d, y= 2z/h− 1 (where 0< z< h) and Tn(·) is the Chebyshev
polynomial of order n. All experimental and numerical results are non-dimensionalized
in terms of a characteristic length scale d= ro− ri= 7.64 mm (the annular gap width)
and a characteristic (viscous) time scale τ = d2/ν = 56.7 s.

To quantify flow fields in both simulations and experiments, the perturbation flow
field

ṽ(t)= v(t)− vlam, (2.2)

characterizes the deviation of the full flow v(t) from an axially symmetric laminar
flow vlam computed numerically at the same Reynolds numbers. The numerically
computed vlam was used to compute the perturbation flow field for both simulations
and experiments since the laminar flow is unstable for some Rei considered in this
study, and, therefore, unobservable in the laboratory experiments.

3. Results
First, we briefly describe a coarse experimental exploration of laminar–turbulent

(turbulent–laminar) transitions that occur as Rei is slowly increased (decreased) while
maintaining Reo fixed in the counter-rotating regime. We then focus on the case of
Reo = −1000 and examine in detail the transitions associated with increasing and
decreasing Rei using both laboratory experiments and numerical simulations.
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boundary for ˝  = ∞
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FIGURE 2. Phase diagram illustrating the hysteretic laminar–turbulent transition in
experiments on counter-rotating (Reo < 0 and Rei > 0) Taylor–Couette flow with Γ = 5.26
and η= 0.905. The diagram indicates transitions observed in experiments where Rei was
increased or decreased quasi-statically while keeping Reo fixed. The black solid and dashed
lines, drawn to guide the eye, indicate the transition boundaries from laminar flow to
turbulence and from turbulence to laminar flow, respectively. The grey dash-dotted line
represents the marginal stability curve for TCF at η= 0.9 for Γ =∞ (Esser & Grossmann
1996).

3.1. Laminar–turbulent transition: dependence on Reo

To coarsely map out the transition boundaries for TCF in the geometry studied here,
we performed flow visualization experiments by first spinning up the outer cylinder
from rest (with the inner cylinder stationary) to a specific value of Reo; then, with
Reo held constant, Rei was increased in steps of 1Rei= 10 by slowly stepping up the
rotation rate of the inner cylinder until a qualitative change in the flow was observed.
We waited a time interval of 3.2τ between steps to ensure that the flow had reached
equilibrium. The turbulent–laminar transition boundary at the same Reo was then
determined by starting in the turbulent regime and slowing the inner cylinder down
by 1Rei = 10 every 3.2τ until the flow was observed to be in the laminar state. The
experiments were repeated for different fixed values of Reo.

The experimental studies revealed that instability of the azimuthally symmetric
smooth laminar flow always leads to turbulence over a range of Reo from −3500
to −500 (figure 2). The transition back to laminar flow was always observed to
be hysteretic with the range in Rei over which hysteresis occurs increasing as the
magnitude of Reo increases. Our results indicate that transition from laminar flow
is suppressed by the moderate aspect ratio of our apparatus, i.e. for fixed Reo, the
transition occurs at Rei larger than that predicted by linear stability analysis with
Γ =∞ (grey line in figure 2). This observation is consistent with earlier experiments
at larger values of Γ (and somewhat smaller values of η) where, like our studies,
the endcaps rotated with the outer cylinder (Hamill 1995). In that work, the delay of
the laminar–turbulent transition was found to increase with decreasing Γ , most likely
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(a) (b) (c)

FIGURE 3. Evolution of the flow during laminar to turbulent transition in experiments at
Reo=−1000 and Rei= 643. The sequence of snapshots shows (a) the initial laminar flow,
(b) transient interpenetrating spirals and (c) persistent intermittent turbulence.

due to the endwall effects (e.g. dissipation and Ekman pumping) that become more
pronounced as Γ decreases.

3.2. Flow transitions at Reo =−1000
A detailed experimental and numerical investigation at fixed Reo = −1000 led
to the observation of an intermediate state that plays an important role in the
laminar–turbulent transition. The transition from turbulence to laminar flow was
found to involve an aperiodic stable intermediate state (interpenetrating spirals) that
persists over a range of Rei. Moreover, IPS were found to appear – albeit transiently
– during the transition from laminar flow to turbulence. Transitions between different
flow states are described in detail below.

3.2.1. Transitions in laboratory experiments
Transitions were determined in flow visualization studies by first spinning up the

outer cylinder to Reo = −1000 (with the inner cylinder at rest), and then increasing
the inner cylinder’s counter-rotation in steps of 1Rei = 0.5 every 3.2τ , until the flow
became turbulent. Subsequently, beginning from the turbulent state, Rei was decreased
at the same rate as before until the flow returned to the laminar state. No observable
shifts in the transition boundaries were found when incrementing or decrementing Rei
in steps of 1Rei = 0.25 separated in time by 10.7τ .

With the flow starting in a laminar state, laboratory experiments exhibit a
laminar–turbulent transition at Rei = 643 with a total uncertainty in Rei of ±2.
Repeated measurements demonstrate the transition can be observed with a resolution
of ±0.13 (i.e. 0.02 %), as constrained by the mechanical limits of the motor and
transmission driving the inner cylinder; in other words, from laminar flow just below
threshold (cf. figure 3a), a single increment of 1Rei = 0.13 results in turbulence. At
onset (with Rei fixed), the structure of the flow changes slowly at first; very weak
interpenetrating spirals gradually become discernible and grow slowly in amplitude
with time (cf. figure 3b). Then, abruptly, the spirals break up and spatio-temporally
intermittent turbulence develops on top of an IPS-like background flow and persists
(cf. figure 3c). The interval of time over which the flow resembles IPS before
transitioning to turbulence was different each time the experiment was performed
and this interval decreased with an increase in the increment size of 1Rei. If Rei
is increased stepwise (with a fixed time interval of 3.2τ between each step), the
transition Rei is unchanged for increments of 1Rei < 1; the transition Rei is observed
to decrease for increments of 1Rei > 1.

Starting from turbulent flow, decreasing Rei reveals a transition to stable IPS at
Rei = 625 ± 3.6. IPS were observed to be weakly chaotic (i.e. having a broad-band
temporal spectrum) over a range of Rei and persist for as long as 3.8× 103τ (two and
a half days, after which time the experiments were ended). From stable IPS, increasing
Rei leads to a transition back to intermittent turbulence at Rei= 631± 3.7; decreasing
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Transition Experiment Noiseless DNS

Laminar→ turbulence 643± 2 675± 5
Turbulence→ IPS 625± 3.6 623.5± 0.5
IPS→ turbulence 631± 3.7 630.5± 0.5
IPS→ laminar 617± 1 617.5± 0.5

TABLE 1. The inner cylinder Reynolds numbers for flow transitions are shown for both
laboratory experiments and numerical simulations at Reo = −1000. Uncertainty values
from the experiment reflect the systematic uncertainties associated with the measurement
of Re as well as repeatability of the transition, while the uncertainty values from the
noiseless DNS reflect the resolution with which the dependence on Rei was investigated.
The uncertainties in experimental values were calculated using an uncorrelated linear
propagation of uncertainties associated with all measured quantities and measurement
repeatability represented by the standard deviation.

Rei leads instead to a transition to the axisymmetric laminar state at Rei= 617± 1. It
should be noted that the values of Rei at which various transitions are observed (see
table 1) depend on disturbances of two qualitatively different types: (a) disturbances
associated with a discrete change of Rei and (b) other types of disturbances (e.g. the
cylinders not being perfectly round or coaxial, the deviation in their angular velocity
from a constant, etc.). All of these are disturbances of a finite, although likely small,
amplitude.

Quenching experiments can provide information on the transition from chaotic/
turbulent states that is complementary to results obtained via quasi-static changes
in Reynolds number (Bottin & Chaté 1998; Prigent & Dauchot 2005; Peixinho &
Mullin 2006; Borrero-Echeverry et al. 2010). A typical quenching experiment begins
with the flow in a chaotic/turbulent state at fixed Reynolds numbers. At an instant in
time, Rei is abruptly increased or decreased to a new value and held constant; the
subsequent ‘lifetime’ of the flow (the time required for the initial flow to change to
a qualitatively different state) is determined. Repeating the same experiment often
yields a distribution of measured lifetimes, which provides insight into the nature
of the transition. To probe the transition from turbulence to IPS, a turbulent state at
Rei= 640 was first established and monitored for 5.3τ ; the inner cylinder rotation was
then rapidly (in approximately 4.2× 10−3τ ) reduced to Rei = 623. The time interval
between the reduction in Rei and the disappearance of turbulence was recorded.
Similarly, to probe the transition from IPS to turbulence, we initially set Rei = 623.
The IPS was monitored for 5.3τ ; then, the inner cylinder rotation was rapidly (in
approximately 4.2× 10−3τ ) increased to Rei = 640 and the time interval between the
increase in Rei and the first appearance of turbulence was recorded.

Figure 4 summarizes the results from 250 experiments performing the same cycle
of transitions between turbulence and IPS; the data indicate a clear exponential
distribution of intervals between the time when the inner cylinder rotation rate is
changed and the time at which turbulence either completely disappears (cf. figure 4a)
or first appears (cf. figure 4b). The exponential distribution suggests that both
transitions describe a memoryless Poisson process, with a chaotic attractor at the
initial Rei becoming a chaotic repeller at the final Rei. There are, however, different
scenarios that could gives rise to exponential distribution of transition times such
as a boundary crisis bifurcation (Kadanoff & Tang 1984; Kantz & Grassberger
1985) and a noise-induced transition (Do & Lai 2005); to determine the specific
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100(a)

10-1

10-2

100(b)

10-1

10-2

P

2 4
t

0.4 0.8
t

Turbulence to IPS IPS to turbulence

FIGURE 4. Transition probability P(t). After an abrupt change in Rei, the transition time
for turbulence to either (a) disappear or (b) first appear is exponentially distributed. P(t)
indicates the fraction of experimental trials where either (a) turbulence still persists after
changing Rei from 640 to 623 or (b) turbulence has not yet appeared after changing Rei
from 623 to 640. The uncertainty bars in the vertical direction describe the uncertainty
UP =

√
f (1− f )/N, where f (t) is the fraction of the number of events where turbulence

survived for longer than time t and N is the total number of events observed (Moore &
McCabe 1998).

mechanism at play here, further investigation would be needed. Similar distributions
of transition lifetimes were found in relaminarization studies of high-aspect-ratio TCF
(Borrero-Echeverry et al. 2010).

Quenching experiments were also performed for the transition from stable IPS to
laminar flow; however, due to the discreteness with which Rei could be varied in
experiment, we could not find a final Rei for which a meaningful distribution of
lifetimes could be observed.

3.2.2. Transitions in numerical simulations
Numerical simulations were used to determine linear stability of the steady

axisymmetric laminar flow vlam. This flow was generated at Reo = −1000 and
different fixed Rei by keeping only the m = 0 azimuthal Fourier mode and evolving
the state until it stopped changing. The azimuthal symmetry of this flow was then
broken by perturbing the m = 1 Fourier mode (with the nonlinear term generating
disturbances for all m 6= 0). Specifically, a random Gaussian noise with standard
deviation σ = 10−8 was added to the coefficient of each of the spectral modes
Vkn1

i |t=0, i = r, θ, z (note this is a very small perturbation since Vkn0
θ = O(Reo)).

Evolving the perturbed flow, we found that the perturbation decays (the laminar state
is linearly stable) for Rei < Rec

i = 675 ± 5 and grows, resulting in a transition to
turbulence, for Rei > Rec

i .
Since the laminar flow undergoes transition to turbulence in experiment at a notably

lower Rei than the linear stability threshold Rec
i , an investigation of its stability to

finite amplitude disturbances was performed. Qualitatively, we find that, for Rei > 634,
finite amplitude perturbations lead to destabilization of the laminar state (cf. figure 5a),
giving rise to IPS with an amplitude that grows and saturates temporarily (cf.
figure 5b). Ultimately the IPS gives way to spatio-temporally intermittent turbulence
(cf. figure 5c), just as in the experiment. Qualitatively the same transition sequence
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(a) (b) (c)

FIGURE 5. Evolution of the flow during the laminar to turbulent transition in numerical
simulations at Reo = −1000 and Rei = 645. (a) A laminar flow becomes unstable,
transitioning first to (b) interpenetrating spirals and, eventually, (c) turbulence. Each panel
shows isosurfaces of the radial velocity component; the colour indicates the corresponding
azimuthal velocity component. Red (blue) indicates flow in the same direction as the inner
(outer) cylinder rotation.

(a) (b) (c)

FIGURE 6. Interpenetrating spirals at Reo =−1000 and (a) Rei = 620, (b) Rei = 625, (c)
Rei = 630. Each panel shows isosurfaces of the radial velocity component; the colour
indicates the corresponding azimuthal velocity component. Red (blue) indicates flow in
the same direction as the inner (outer) cylinder rotation.

was found to occur for initial disturbances with different magnitudes and spatial
profiles.

To quantify qualitatively how the critical disturbance amplitude depends on Rei, we
fixed the spatial profile of the disturbance by choosing the initial condition in the form
of a homotopy

v = (1− α)vlam
+ αvIPS, (3.1)

where vlam is the laminar flow at the given Rei and vIPS is a snapshot of the
(non-axisymmetric) IPS at Rei = 630. As figure 6 illustrates, the structure of the
IPS is fairly similar at different Rei; thus, for the purpose of determining critical
disturbance amplitudes, we considered it to be sufficient to compute vIPS at a fixed
Rei. The homotopy parameter 06α61 characterizes the magnitude of the disturbance;
increasing α increases the disturbance amplitude. This particular choice of homotopy
guarantees that initial conditions are divergence free for any value of α.

For each Rei we considered, a series of numerical simulations were performed with
each simulation at a different value of α; the simulations were run until the flow
approached an asymptotic state. We then used bisection to determine the largest value
of α at which the flow relaminarized. The critical value αc is then defined as the
midpoint between the two α values found that produce relaminarization and transition.
The results are summarized in figure 7 and suggest that the bifurcation at Rec

i leading
to the loss of stability of the laminar flow is subcritical, with αc decreasing with
increasing Rei and vanishing at Rec

i . Furthermore, for Rei > 634, disturbances with
α > αc lead to a transition to turbulence with IPS serving as a transient intermediate
state. For Rei 6 633, on the other hand, disturbances with α>αc lead to a transition to
stable IPS. We note that the value Rei= 643± 2 at which the transition to turbulence
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åc

FIGURE 7. The critical magnitude αc of the homotopy parameter below which the flow
relaminarizes at different Rei. The symbols t and p denote that the flows at this Rei
transition to IPS and turbulence, respectively, for α > αc.

is found in experiment corresponds to αc ≈ 0.02, suggesting the ambient disturbance
level present in the experiments is fairly low.

To illustrate the transition from laminar flow to turbulence, figure 8 shows the
energies of the ten leading azimuthal Fourier modes (m= 0, . . . , 9)

Em(t)=
∫ 1/(1−η)

η/(1−η)
r dr

∫ Γ

0
|vm(t)|2 dz, (3.2)

where vm is the mth Fourier component of the velocity field, for a representative
numerical simulation at Rei = 640, where the initial condition was constructed using
the homotopy (3.1) with α = 0.06. One can clearly see three distinct regimes: for
0< t / 0.7 the perturbation about the laminar flow grows. For 0.7 / t / 1.6, the flow
temporarily saturates into IPS where the mode energies remain roughly constant, with
modes m= 4 and m= 5 dominating. Finally, for t ' 1.6, IPS give way to turbulence.
The flows corresponding to the three regimes are qualitatively similar to those shown
in figure 5.

Note that our findings are consistent with the related numerical study performed by
Meseguer et al. (2009b) for a counter-rotating Taylor–Couette flow with comparable η,
Rei, and Reo, but axially periodic boundary conditions. In that study, travelling wave
states featuring spiral flows were found to arise in a subcritical bifurcation of the
laminar flow, with the modes m= 4 and m= 5 destabilizing at the lowest Rei. This
raises the possibility that the unstable travelling wave(s) corresponding to these modes
serve as the ‘edge states’ whose stable manifold(s) serve as the boundary between the
laminar flow and chaotic IPS (Schneider et al. 2008). The data presented in figures 7
and 8 are certainly consistent with this possibility.

Numerical simulations find the same sequence of transitions as laboratory
experiments when the flow is initially turbulent. Decreasing Rei first leads to a
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FIGURE 8. The energy of the flow contained in the ten leading azimuthal Fourier modes
during the transition from laminar flow to turbulence at Rei= 640. The mode numbers are
shown next to each curve.

transition to stable IPS at Rei= 623.5± 0.5. From stable IPS, increasing Rei leads to
a transition back to turbulence at Rei = 630.5± 0.5, while decreasing Rei leads to a
transition to the time-independent laminar state at Rei=617.5±0.5. These numerically
determined transition Reynolds numbers between IPS and turbulence and from IPS to
laminar are quantitatively in agreement with those found in laboratory experiments, as
illustrated in table 1. However, due to the subcritical nature of the transition between
laminar and turbulent flow, an appropriate choice of finite amplitude perturbation is
required to properly compare the transition thresholds in experiment and numerics.

The protocol for determining Rei for transition from turbulence to IPS is as follows:
we started with verifying that turbulence persists at Rei = 640 by evolving the flow
for a time interval 5.264τ . Then we ramped down Rei in increments of 1Rei = 5
and evolved the flow for the same interval to determine whether a transition occurred.
Once a transition was detected (at Rei= 620), we re-initialized the flow using the final
state of the simulation at Rei = 625, decreased the Reynolds number by 1Rei = 1,
and evolved the flow for a further 5.264τ . The procedure was repeated with 1Rei =

2, 3, . . . until a transition was found.
A similar protocol was used for the two transitions from stable IPS. In these cases,

we verified that stable IPS persists at Rei = 620 and 630. The final states of the
simulation at Rei = 630 (or Rei = 620) were evolved for 5.264τ at a fixed Rei that
was increased (or decreased) by 1Rei = 1, 2, 3, . . . until transition to turbulence (or
laminar flow) was found. Note that, in all of these cases, only one simulation was
performed and the finest resolution was 1Rei = 1, which determines the accuracy of
the values reported in table 1.

Given ample experimental evidence that the transitions between turbulence and
IPS are probabilistic, we did not investigate these transitions numerically in more
detail. For the transition from IPS to laminar flow, however, experiments did not
conclusively determine the nature of the transition. We therefore performed an
additional numerical investigation of this transition by evolving IPS at a number of
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(a) (b)

FIGURE 9. A snapshot of interpenetrating spirals in (a) a tomo PIV experiment and (b)
DNS. Each image shows a single isosurface of the perturbation field, ṽθ , for Rei = 625
and Reo =−1000 inside a cylindrical subvolume. The colour indicates the corresponding
azimuthal velocity component. Red (blue) indicates flow in the same direction as the inner
(outer) cylinder rotation. The shaded orange rectangular box represents the region probed
by tomo PIV, which spans approximately 10 % of the flow domain volume.

(a) (b)

FIGURE 10. A snapshot of a turbulent flow in experiment (a) and DNS (b). Each image
shows a single isosurface of the perturbation field, ṽθ , for Rei = 650 and Reo = −1000
inside a cylindrical subvolume. The colour indicates the corresponding azimuthal velocity
component. Red (blue) indicates flow in the same direction as the inner (outer) cylinder
rotation. The shaded orange rectangular box represents the region probed by tomo PIV,
which spans approximately 10 % of the flow domain volume.

fixed Rei in the range (617, 618). While most of the results were consistent with
a transition threshold found previously, there were a few outliers. In particular, we
found that evolving IPS for 5.264τ at Rei = 617.8125 does not result in a transition
to a laminar flow, although eventually the flow does relaminarize. This result shows
that the transition from IPS to laminar flow also appears to have a probabilistic
nature and does not correspond to a bifurcation which would have resulted in a sharp
transition boundary.

3.2.3. Flow field characterization
Flow fields computed numerically also compare well with measurements from

laboratory experiments. The stable IPS found in simulations and experiments exhibit
a similar spatial structure (figure 9). Moreover, both experiments and simulations
show that just above the onset of turbulence, the flow features localized patches
of turbulence that co-exist with disordered spiral structures (cf. figures 5c and 10).
To quantitatively compare the flows in experiment and numerics, we computed the
average energy E corresponding to the θ component of the velocity perturbation
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FIGURE 11. Transition map for the three flow states: laminar, IPS and turbulence.
Numerically computed values of E for stable IPS and turbulence at various Rei are plotted
asf while the values calculated from experimental measurements are plotted asu. The
gold and blue arrows indicate the values of Rei at which transitions occur in simulation
and experiment respectively. The shading around the arrows corresponds to the uncertainty
in the transitional Rei value. The t and p symbols represent the E value associated
with the critical magnitude of the finite amplitude perturbation considered here, which
corresponds to α = αc, necessary to initiate transition from laminar flow to IPS and
turbulence, respectively. All curves are to guide the eye only.

ṽ = v − vlam over a time interval T =O(τ ) and region Ω in the r, z plane at a fixed
azimuthal location where experimental velocity measurements were available. Only
the θ -component of velocity was analysed because vr and vz had increased noise
due to the frame rates used in the PIV. The region Ω is bounded by the coordinates
r ∈ [η/(1 − η), 1/(1 − η)] and z/Γ ∈ [0.254, 0.973], where z is measured from the
bottom of the flow domain. For the stable states (IPS and turbulence), the average
energy was defined according to

E=
1

TA

∫ T

0
dt

∫
Ω

ṽ2
θ (t) dr dz, (3.3)

where A is the area of the cross-section of Ω .
The information presented in previous sections is summarized in figure 11 in the

form of a bifurcation diagram. In particular, we find that the energy E serves as a
good order parameter that allows one to easily distinguish the qualitatively different
flows (laminar flow, IPS and turbulence) and to determine where transitions between
different flows take place. In particular, we find that the average values of E in
experiment and numerics are in good quantitative agreement and that E changes
smoothly with Rei for both IPS and turbulent flow over the regions where these flows
are stable (indicated by solid black lines). The dashed lines indicate the trends when
these flow states become unstable and are merely extrapolations of the solid curves.

The figure also shows how the energy of the critical disturbance that lies on
the boundary of the basin of attraction of the stable laminar flow varies with Rei.
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The dotted (dashed) line denotes to the transition to IPS (turbulence). To compute
this boundary, we performed the average over the azimuthal variable rather than time
in (3.3), where ṽ=α(vIPS

− vlam) according to (3.1) and α=αc. Although the specific
values of E which define this boundary, just like αc, depend on the spatial structure
of the perturbation ṽ, the shape of the boundary suggests that it is related to an
unstable edge state (or states) connecting the laminar state and IPS, as discussed
previously.

4. Discussion

Two distinct instabilities at play in counter-rotating TCF form the basis for a
qualitative physical picture of turbulent transition. In the limiting case where Reo

approaches zero (the outer cylinder is at rest), the laminar flow is subject to centrifugal
instability when Rei is sufficiently large. By contrast, in the limiting case where Rei

approaches zero (the inner cylinder is at rest), the flow is centrifugally stable for
all values of Reo, but is subject to shear instability for Reo sufficiently large. Under
counter-rotation, both instability mechanisms can, roughly speaking, be thought of
as operative in distinct spatial regions, separated by a ‘nodal surface’ where the
azimuthal velocity component is zero. On the side of the nodal surface nearer
the inner cylinder, the azimuthal velocity component is decreasing with increasing
radial distance from the inner cylinder, thereby providing a necessary condition for
centrifugal instability in this (inner) flow region. On the side of the nodal surface
nearer the outer cylinder, centrifugal instability is ruled out since the azimuthal
velocity component is increasing with increasing radial distance from the inner
cylinder; however, shear flow instabilities remain a possibility in this (outer) flow
region.

Prior work in large-aspect-ratio counter-rotating TCF has described a scenario
in which the interplay between the inner and outer flow regions leads to turbulent
transition. When Reo is fixed and sufficiently large in magnitude and Rei is increased
quasi-statically, the primary instability of the laminar flow leads to the formation
of stable spiral flows (Coles 1967; Andereck et al. 1986; Eckhardt & Yao 1995;
Goharzadeh & Mutabazi 2001), which are mainly confined to the centrifugally
unstable inner region and qualitatively similar to IPS described in the present paper.
Simulations with periodic axial boundary conditions (Coughlin & Marcus 1996)
showed that, as Rei is increased beyond the primary instability, the spiral flow in the
inner region increasingly disturbs the centrifugally stable outer region. Coughlin &
Marcus found that, beyond a certain Rei, the disturbance amplitude becomes strong
enough to trigger a shear instability in the outer layer leading to turbulence. This
transition scenario is in qualitative agreement with experimental observation in TCF
with moderate-to-large aspect ratios (17 6 Γ 6 46) (Hamill 1995).

Our experimental results suggest the interactions between inner and outer flow
regions also play a central role in transition in small-aspect-ratio TCF, with the
important difference that transition from laminar flow leads directly to turbulence
facilitated by the temporary appearance of IPS. The laminar state with Reo

fixed exhibits a subcritical rather than a supercritical instability as Rei increased
quasi-statically. Consequently, as Rei increases, the laminar flow undergoes a finite
amplitude instability leading to growth of a spiral flow mostly confined to the inner
region (cf. figure 12a). However, unlike the large-aspect-ratio case, the emerging
spiral states are transient, with the flow in the inner region generating disturbances
of sufficient amplitude to trigger shear instability in the outer region leading to
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(a) (b)

FIGURE 12. Typical snapshots of the radial velocity in the constant θ plane for (a) IPS
and (b) turbulence in the numerical simulation at Rei = 637 and Reo = −1000. The r
direction is vertical and z is horizontal, with the inner cylinder at the bottom. Red (blue)
indicates positive (negative) values of vr.

turbulence (cf. figure 12b). Stable IPS do exist in our system at lower Rei, but are
disconnected from the axisymmetric laminar solution. The transition from stable IPS
to turbulence appears similar to the large-aspect-ratio case.

This transition, as well as the reverse transition from turbulence to stable IPS
are similar from a dynamical systems standpoint. The results shown in figure 4(a)
for the decay from turbulence is reminiscent of earlier observations of transitions
from turbulence in pipe flows (Faisst & Eckhardt 2004; Peixinho & Mullin 2006;
Avila et al. 2011) and in large-aspect-ratio TCF driven solely by outer cylinder
rotation (Borrero-Echeverry et al. 2010). In all these cases, the exponential decay
from turbulence is suggestive of a memoryless process in which, from a state space
viewpoint, the transient character of turbulence is captured by a finite-time escape
from a chaotic repeller to a qualitatively different solution. Interestingly, in all
previous work, once the turbulent transients had disappeared, the flow relaminarized;
by contrast, our results demonstrate, for the first time, that turbulence gives way to
another chaotic state (IPS). Moreover, figure 4(b) suggests the transition from IPS
to turbulence exhibits a similar character, so that for sufficiently large Rei, IPS are
described by a chaotic repeller and the flow transitions to a different chaotic state
(turbulence). In this regard, the origin of the IPS-to-turbulent transition observed here
is quite different from the linear secondary instability mechanism proposed earlier
(Coughlin & Marcus 1996). The change of the nature of the chaotic set underlying
IPS from an attractor at lower Rei to a repeller at higher Rei also explains the
transient appearance of IPS during the transition from laminar to turbulent flow.

Prior work has demonstrated the chaotic behaviour of IPS arises from competition
between spiral modes of different wavenumbers and helicities (Andereck et al. 1986;
Hamill 1995; Coughlin & Marcus 1996). Our observations of IPS were made in a
TCF apparatus with an aspect ratio substantially smaller than that employed in earlier
studies of IPS; thus, axial confinement effects in our work hinders clear identification
of distinct spiral modes at play in IPS. Nevertheless, we speculate that chaos in IPS
observed here originates from qualitatively similar mode interactions as that found in
larger-aspect-ratio studies.

5. Conclusion
Our experimental and numerical results indicate that, for suitable parameter values,

Taylor–Couette flow can exhibit some key characteristics commonly observed in the
transition to turbulence in other shear flows. The transition from laminar flow to
turbulence is subcritical, like that observed for flows in channels and boundary layers.
In particular, when transition is probed by increasing Rei sufficiently slowly (see
§ 3.2.1), structured, non-turbulent flows (transient interpenetrating sprials) mediate the
transition to turbulence in Taylor–Couette flow in a manner that is analogous to the
role of Tollmien–Schlichting (TS) waves in the transition to turbulence in channels
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and boundary layers in low-noise environments. However, there are also significant
differences between Taylor–Couette flow and other canonical shear flows: the physical
instability mechanism of IPS (centrifugal instability) differs from the mechanisms for
TS waves; TCF transition does not feature a linear growth regime like that found for
TS waves in channel and boundary layer transition; stable, nonlinearly saturated TS
waves are never observed in channels/boundary layers, unlike the stable IPS observed
in TCF.

Subcritical laminar–turbulent transition is most commonly studied in open flows.
However, closed flows such as TCF, which display highly reproducible transitions
and close correspondence between numerics and experiments, offer opportunities to
explore in much greater detail behaviours that may show up in a variety of shear
flows, open or closed. One such opportunity for future study emerging from recent
theoretical and experimental work suggests that the dynamics of turbulent flows is
guided by particular unstable solutions to the Navier–Stokes equation (Hof et al. 2004;
Suri et al. 2017). This work suggests that selected solutions with simple temporal
behaviour (e.g. equilibria, limit cycle oscillations) exhibit spatial structures that are
strikingly similar to well-known patterns (coherent structures) that have long been
known to play a central role in turbulence; moreover, a suitable selection of such
solutions (known as exact coherent structures) can be harnessed to capture turbulent
flow dynamics and statistics (e.g. average turbulent flow properties). Our results
suggest that exact coherent structures with spiral spatial structures could play a role
in mediating laminar–turbulent transition in counter-rotating Taylor–Couette flow.
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