We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter the wave body interaction is extended to the second order in the wave amplitude. This leads to wave loads, and responses, taking place at the sum and difference frequencies of the components in the incoming wave system. The time averaged wave load (the drift force) is first considered in regular waves. The different formulations of the drift force (near-field, far-field, middle-field, Lagally) are described. The sensitivity of the drift force to a coincident current is emphasized and the extension of the diffraction radiation theory to a superimposed current is presented, together with the so-called Aranha’s formula that offers a practical approximation to the wave drift damping effect. Second-order diffraction theory is detailed in regular waves, with practical application to a bottom-mounted vertical cylinder. The concept of Quadratic Transfer Function (QTF) is first introduced in the case of bichromatic seas and then applied to the low frequency loading in irregular waves, where the validity of frequently used approximations (e.g. Newman approximation) is discussed. A section is then devoted to the Rainey equations which can be viewed as a second-order extension of the inertia term in the Morison equation. Finally practical calculation of the slow-drift and springing responses is considered.
In this chapter linearized potential flow theory is applied to the prediction of wave loads upon marine structures, and of their wave response. The linearized diffraction radiation theory is presented, leading to the wave excitation loads, added masses, and radiation dampings. Analytical, semi-analytical, and numerical methods of resolution are given, the first one for the case of one or several bottom-mounted vertical cylinders. Comparisons are offered with experimental results, where the merits and short-comings of the linearized theory are emphasized. Separate sections are then devoted to specific problems such as barge roll resonance, recovery of wave energy, coupling between seakeeping and sloshing in tanks, and resonances in moonpools and gaps.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.