We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if
$0^\sharp $
exists then every Silver indiscernible is VSS in L. We also show that the statement
$\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$
, where
$\operatorname {\mathrm {uB}}$
is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a
$\Sigma _2$
-reflecting VSS cardinal.
We prove several equivalences and relative consistency results regarding generic absoluteness beyond Woodin’s ${\left( {{\bf{\Sigma }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ generic absoluteness result for a limit of Woodin cardinals λ. In particular, we prove that two-step $\exists ^ℝ \left( {{\rm{\Pi }}_1^2 } \right)^{{\rm{uB}}_\lambda } $ generic absoluteness below a measurable limit of Woodin cardinals has high consistency strength and is equivalent, modulo small forcing, to the existence of trees for ${\left( {{\bf{\Pi }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ formulas. The construction of these trees uses a general method for building an absolute complement for a given tree T assuming many “failures of covering” for the models $L\left( {T,{V_\alpha }} \right)$ for α below a measurable cardinal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.