For a dense
${{G}_{\delta }}$ set of real parameters
$\theta $ in [0, 1] (containing the rationals) it is shown that the group
${{K}_{0}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})$ is isomorphic to
${{\mathbb{Z}}^{9}}$, where
${{A}_{\theta }}$ is the rotation
${{\text{C}}^{*}}$-algebra generated by unitaries
$U,\,V$ satisfying
$VU\,=\,{{e}^{2\pi i\theta }}UV$ and
$\sigma $ is the Fourier automorphism of
${{A}_{\theta }}$ defined by
$\sigma (U)\,=\,V,\,\sigma (V)\,=\,{{U}^{-1}}$. More precisely, an explicit basis for
${{K}_{0}}$ consisting of nine canonical modules is given. (A slight generalization of this result is also obtained for certain separable continuous fields of unital
${{\text{C}}^{*}}$-algebras over [0, 1].) The Connes Chern character
$\text{ch:}\,{{K}_{0}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})\,\to \,{{H}^{\text{ev}}}{{({{A}_{\theta \,}}{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})}^{*}}$ is shown to be injective for a dense
${{G}_{\delta }}$ set of parameters
$\theta $. The main computational tool in this paper is a group homomorphism
$\mathbf{T}\,\text{:}\,{{K}_{0}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})\,\to \,{{\mathbb{R}}^{8}}\,\times \,\mathbb{Z}$ obtained from the Connes Chern character by restricting the functionals in its codomain to a certain nine-dimensional subspace of
${{H}^{\text{ev}}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})$. The range of
$\mathbf{T}$ is fully determined for each
$\theta $. (We conjecture that this subspace is all of
${{H}^{\text{ev}}}$.)