We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
At relatively high frequencies, highly sensitive grating sidelobes occur in the primary beam patterns of low frequency aperture arrays (LFAA) such as the Murchison Widefield Array (MWA). This occurs when the observing wavelength becomes comparable to the dipole separation for LFAA tiles, which for the MWA occurs at
${\sim}300$
MHz. The presence of these grating sidelobes has made calibration and image processing for 300 MHz MWA observations difficult. This work presents a new calibration and imaging strategy which employs existing techniques to process two example 300 MHz MWA observations. Observations are initially calibrated using a new 300 MHz sky-model which has been interpolated from low frequency and high frequency all-sky surveys. Using this 300 MHz model in conjunction with the accurate MWA tile primary beam model, we perform sky-model calibration for the two example observations. After initial calibration a self-calibration loop is performed by all-sky imaging each observation. We mask the main lobe of the all-sky image, and perform a sky-subtraction by estimating the masked image visibilities. We then image the main lobe of the sky-subtracted visibilities, which results in high dynamic range images of the two example observations. These images have been convolved with a Gaussian to a resolution of
$2.4$
arcminutes, with a maximum sensitivity of
${{\sim}}31\,\textrm{mJy/beam}$
. The calibration and imaging strategy demonstrated in this work opens the door to performing science at 300 MHz with the MWA, which was previously an inaccessible domain. With this paper we release the code described below and the cross-matched catalogue along with the code to produce a sky-model in the range 70–1 400 MHz.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.