The Halphen operator is a third-order operator of the form
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0013091516000249/resource/name/S0013091516000249_eqn01.gif?pub-status=live)
where g ≠ 2 mod(3), where the Weierstrass ℘-function satisfies the equation
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0013091516000249/resource/name/S0013091516000249_eqn02.gif?pub-status=live)
In the equianharmonic case, i.e. g2 = 0, the Halphen operator commutes with some ordinary differential operator Ln of order n ≠ 0 mod(3). In this paper we find the spectral curve of the pair L3, Ln.