We consider a 1-D tank containing an inviscid incompressible
irrotational fluid. The tank is subject to the control which consists
of horizontal moves. We assume that the motion of the fluid
is well-described by the Saint–Venant equations (also
called the
shallow water equations).
We prove the local
controllability of this nonlinear control
system around any steady state.
As a corollary we get that one can move from any steady state to any
other steady state.