We find a lower bound on the number of imaginary quadratic extensions of the function field
${{\mathbb{F}}_{q}}\left( T \right)$ whose class groups have an element of a fixed order.
More precisely, let
$q\,\ge \,5$ be a power of an odd prime and let
$g$ be a fixed positive integer
$\ge \,3$. There are
$\gg \,{{q}^{\ell \left( \frac{1}{2}+\frac{1}{g} \right)}}$ polynomials
$D\,\in \,{{\mathbb{F}}_{q}}\left[ T \right]$ with
$\deg \left( D \right)\,\le \,\ell $ such that the class groups of the quadratic extensions
${{\mathbb{F}}_{q}}\left( T,\,\sqrt{D} \right)$ have an element of order
$g$.