Natural language processing (NLP) has significantly advanced our ability to model and interact with human language through technology. However, these advancements have disproportionately benefited high-resource languages with abundant data for training complex models. Low-resource languages, often spoken by smaller or marginalized communities, need help realizing the full potential of NLP applications. The primary challenges in developing NLP applications for low-resource languages stem from the need for large, well-annotated datasets, standardized tools, and linguistic resources. This scarcity of resources hinders the performance of data-driven approaches that have excelled in high-resource settings. Further, low-resource languages frequently exhibit complex grammatical structures, diverse vocabularies, and unique social contexts, which pose additional challenges for standard NLP techniques. Innovative strategies are emerging to address these challenges. Researchers are actively collecting and curating datasets, even utilizing community engagement platforms to expand data resources. Transfer learning, where models pre-trained on high-resource languages are adapted to low-resource settings, has shown significant promise. Multilingual models like Multilingual Bidirectional Encoder Representations from Transformers (mBERT) and Cross Lingual Models (XLM-R), trained on vast quantities of multilingual data, offer a powerful avenue for cross-lingual knowledge transfer. Additionally, researchers are exploring integrating multimodal approaches, combining textual data with images, audio, or video, to enhance NLP performance in low-resource language scenarios. This survey covers applications like part-of-speech tagging, morphological analysis, sentiment analysis, hate speech detection, dependency parsing, language identification, discourse annotation guidelines, question answering, machine translation, information retrieval, and predictive authoring for augmentative and alternative communication systems. The review also highlights machine learning approaches, deep learning approaches, Transformers, and cross-lingual transfer learning as practical techniques. Developing practical NLP applications for low-resource languages is crucial for preserving linguistic diversity, fostering inclusion within the digital world, and expanding our understanding of human language. While challenges remain, the strategies outlined in this survey demonstrate the ongoing progress and highlight the potential for NLP to empower communities that speak low-resource languages and contribute to a more equitable landscape within language technology.