We complete our investigations of mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials pn(W2, x) for Erdős weights W2 = e-2Q. The archetypal example is Wk,α = exp(—Qk,α), where
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0008414X00038633/resource/name/S0008414X00038633_eqn01.gif?pub-status=live)
α > 1, k ≥ 1, and
is the k-th iterated exponential. Following is our main result: Let 1 < p < 4 and α ∊ ℝ Let Ln[f] denote the Lagrange interpolation polynomial to ƒ at the zeros of pn(W2, x) = pn(e-2Q, x). Then for
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0008414X00038633/resource/name/S0008414X00038633_eqn2.gif?pub-status=live)
to hold for every continuous function ƒ:ℝ. —> ℝ satisfying
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0008414X00038633/resource/name/S0008414X00038633_eqn3.gif?pub-status=live)
it is necessary and sufficient that α > 1/p. This is, essentially, an extension of the Erdös-Turan theorem on L2 convergence. In an earlier paper, we analyzed convergence for all p > 1, showing the necessity and sufficiency of using the weighting factor 1 + Q for all p > 4. Our proofs of convergence are based on converse quadrature sum estimates, that are established using methods of H. König.