We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is known that a countable
$\omega $
-categorical structure interprets all finite structures primitively positively if and only if its polymorphism clone maps to the clone of projections on a two-element set via a continuous clone homomorphism. We investigate the relationship between the existence of a clone homomorphism to the projection clone, and the existence of such a homomorphism which is continuous and thus meets the above criterion.
Let ${\cal M}$ be ternary, homogeneous and simple. We prove that if ${\cal M}$ is finitely constrained, then it is supersimple with finite SU-rank and dependence is k-trivial for some k < ω and for finite sets of real elements. Now suppose that, in addition, ${\cal M}$ is supersimple with SU-rank 1. If ${\cal M}$ is finitely constrained then algebraic closure in ${\cal M}$ is trivial. We also find connections between the nature of the constraints of ${\cal M}$, the nature of the amalgamations allowed by the age of ${\cal M}$, and the nature of definable equivalence relations. A key method of proof is to “extract” constraints (of ${\cal M}$) from instances of dividing and from definable equivalence relations. Finally, we give new examples, including an uncountable family, of ternary homogeneous supersimple structures of SU-rank 1.
We define a growing model of random graphs. Given a sequence of non-negative integers {dn}n=0∞ with the property that di≤i, we construct a random graph on countably infinitely many vertices v0, v1… by the following process: vertex vi is connected to a subset of {v0, …, vi−1} of cardinality di chosen uniformly at random. We study the resulting probability space. In particular, we give a new characterization of random graphs, and we also give probabilistic methods for constructing infinite random trees.
Suppose that ${\cal M}$ is countable, binary, primitive, homogeneous, and simple. We prove that the SU-rank of the complete theory of ${\cal M}$ is 1 and hence 1-based. It follows that ${\cal M}$ is a random structure. The conclusion that ${\cal M}$ is a random structure does not hold if the binarity condition is removed, as witnessed by the generic tetrahedron-free 3-hypergraph. However, to show that the generic tetrahedron-free 3-hypergraph is 1-based requires some work (it is known that it has the other properties) since this notion is defined in terms of imaginary elements. This is partly why we also characterize equivalence relations which are definable without parameters in the context of ω-categorical structures with degenerate algebraic closure. Another reason is that such characterizations may be useful in future research about simple (nonbinary) homogeneous structures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.