Let
$\mathbb{G}$ be a step-two nilpotent group of
$\text{H}$-type with Lie algebra
$\mathfrak{G}\,=\,V\,\oplus \,\text{t}$. We define a class of vector fields
$X\,=\,\left\{ {{X}_{j}} \right\}$ on
$\mathbb{G}$ depending on a real parameter
$k\,\ge \,1$, and we consider the corresponding
$p$-Laplacian operator
${{L}_{p,\,k}}u\,=\,di{{v}_{X}}\left( {{\left| {{\nabla }_{X}}u \right|}^{p-2}}{{\nabla }_{X}}u \right)$. For
$k\,=\,1$ the vector fields
$X\,=\,\left\{ {{X}_{j}} \right\}$ are the left invariant vector fields corresponding to an orthonormal basis of
$V$; for
$\mathbb{G}$ being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator
${{L}_{p,\,k}}$ and as an application, we get a Hardy type inequality associated with
$X$.