We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
We present various applications of Breuillard, Green and Tao’s rough classification of finite approximate groups to groups of polynomial growth. We define polynomial, exponential and intermediate growth, and show that these concepts are stable under changes of generating set and passing to subgroups of finite index. We prove Breuillard, Green and Tao’s result that if a ball of large enough radius in a Cayley graph is of size polynomial in the radius then the underlying group is virtually nilpotent. We deduce that all larger balls also have polynomial bounds on their sizes. We guide the reader in the exercises to Breuillard and Tointon’s results that a finite group of large diameter admits large virtually nilpotent and virtually abelian quotients. We also prove the same authors’ result that a finite simple group has diameter bounded by a small power of the size of the group. We prove an isoperimetric inequality for finite groups due to Breuillard, Green and Tao. Finally, we give a brief high-level introduction to applications of approximate groups to the construction of expanders.
We finish the classification, begun in two earlier papers, of all simple fusion systems over finite nonabelian p-groups with an abelian subgroup of index p. In particular, this gives many new examples illustrating the enormous variety of exotic examples that can arise. In addition, we classify all simple fusion systems over infinite nonabelian discrete p-toral groups with an abelian subgroup of index p. In all of these cases (finite or infinite), we reduce the problem to one of listing all 𝔽pG-modules (for G finite) satisfying certain conditions: a problem which was solved in the earlier paper [15] using the classification of finite simple groups.
Let $G$ be a finite group, let ${\it\pi}(G)$ be the set of prime divisors of $|G|$ and let ${\rm\Gamma}(G)$ be the prime graph of $G$. This graph has vertex set ${\it\pi}(G)$, and two vertices $r$ and $s$ are adjacent if and only if $G$ contains an element of order $rs$. Many properties of these graphs have been studied in recent years, with a particular focus on the prime graphs of finite simple groups. In this note, we determine the pairs $(G,H)$, where $G$ is simple and $H$ is a proper subgroup of $G$ such that ${\rm\Gamma}(G)={\rm\Gamma}(H)$.
A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.