The paper deals with the existence of positive solutions with prescribed $L^2$
norm for the Schrödinger equation$$-\Delta u+\lambda u+V(x)u=|u|^{p-2}u,\quad u\in H^1_0(\Omega),\quad\int_\Omega u^2{\rm d}\,x=\rho^2,\quad\lambda\in\mathbb{R},$$![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20241007143559694-0891:S0308210523000781:S0308210523000781_eqnU1.png)
where $\Omega =\mathbb {R}^N$
or $\mathbb {R}^N\setminus \Omega$
is a compact set, $\rho >0$
, $V\ge 0$
(also $V\equiv 0$
is allowed), $p\in (2,2+\frac 4 N)$
. The existence of a positive solution $\bar u$
is proved when $V$
verifies a suitable decay assumption (Dρ), or if $\|V\|_{L^q}$
is small, for some $q\ge \frac N2$
($q>1$
if $N=2$
). No smallness assumption on $V$
is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of $\mathbb {R}^N\setminus \Omega$
. The solution $\bar u$
is a bound state and no ground state solution exists, up to the autonomous case $V\equiv 0$
and $\Omega =\mathbb {R}^N$
.