Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption\[ \partial_t u=\Delta u^m-|x|^{\sigma}u^q, \]![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU1.png)
posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$
, with $m>1$
, $q\in (0,\,1)$
and $\sigma =\sigma _c:=2(1-q)/ (m-1)$
is proved. Looking for radially symmetric solutions of the form\[ u(t,x)={\rm e}^{-\alpha t}f(|x|\,{\rm e}^{\beta t}), \quad \alpha=\frac{2}{m-1}\beta, \]![](//static-cambridge-org.ezproxyberklee.flo.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU2.png)
we show that there exists a unique exponent $\beta ^*\in (0,\,\infty )$
for which there exists a one-parameter family $(u_A)_{A>0}$
of solutions with compactly supported and non-increasing profiles $(f_A)_{A>0}$
satisfying $f_A(0)=A$
and $f_A'(0)=0$
. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when $\sigma \in (0,\,\sigma _c)$
.