Let
$G$ be a compact topological group and let
$f:\,G\,\to \,G$ be a continuous transformation of
$G$. Define
${{f}^{*}}:G\to G$ by
${{f}^{*}}\left( x \right)\,=\,f\left( {{x}^{-1}} \right)x$ and let
$\mu \,=\,{{\mu }_{G}}$ be Haar measure on
$G$. Assume that
$H\,=\,\text{IM}\,{{f}^{*}}$ is a subgroup of
$G$ and for every measurable
$C\,\subseteq \,H,\,{{\mu }_{G}}{{\left( \left( {{f}^{*}} \right) \right)}^{-1}}\left( \left( C \right) \right)\,=\,\mu H\left( C \right)$. Then for every measurable
$C\,\subseteq \,G$, there exist
$S\subseteq C$ and
$g\,\in \,G$ such that
$f\left( S{{g}^{-1}} \right)\,\subseteq \,C{{g}^{-1}}$ and
$\mu \left( S \right)\,\ge \,{{\left( \mu \left( C \right) \right)}^{2}}$.