In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let
$\unicode[STIX]{x1D6FD}>1$ be a real number and define the
$\unicode[STIX]{x1D6FD}$-transformation on
$[0,1]$ by
$T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let
$\unicode[STIX]{x1D6F9}_{i}$ (
$i=1,2$) be two positive functions on
$\mathbb{N}$ such that
$\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when
$n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the
$\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$ for any fixed
$x_{0},y_{0}\in [0,1]$.