Let
$X$ be a finite-dimensional connected compact abelian group equipped with the normalized Haar measure
$\unicode[STIX]{x1D707}$. We obtain the following mean ergodic theorem over ‘thin’ phase sets. Fix
$k\geq 1$ and, for every
$n\geq 1$, let
$A_{n}$ be a subset of
$\mathbb{Z}^{k}\cap [-n,n]^{k}$. Assume that
$(A_{n})_{n\geq 1}$ has
$\unicode[STIX]{x1D714}(1/n)$ density in the sense that
$\lim _{n\rightarrow \infty }(|A_{n}|/n^{k-1})=\infty$. Let
$T_{1},\ldots ,T_{k}$ be ergodic automorphisms of
$X$. We have
$$\begin{eqnarray}\frac{1}{|A_{n}|}\mathop{\sum }_{(n_{1},\ldots ,n_{k})\in A_{n}}f_{1}(T_{1}^{n_{1}}(x))\cdots f_{k}(T_{k}^{n_{k}}(x))\stackrel{L_{\unicode[STIX]{x1D707}}^{2}}{\longrightarrow }\int f_{1}\,d\unicode[STIX]{x1D707}\cdots \int f_{k}\,d\unicode[STIX]{x1D707},\end{eqnarray}$$ for any
$f_{1},\ldots ,f_{k}\in L_{\unicode[STIX]{x1D707}}^{\infty }$. When the
$T_{i}$ are ergodic epimorphisms, the same conclusion holds under the further assumption that
$A_{n}$ is a subset of
$[0,n]^{k}$ for every
$n$. The density assumption on the
$A_{i}$ is necessary. Immediate applications include certain Poincaré style recurrence results.