Let
$K\,\subset \,{{\mathbb{R}}^{n+1}}$ be a convex body of class
${{C}^{2}}$ with everywhere positive Gauss curvature. We show that there exists a positive number
$\delta \left( K \right)$ such that for any
$\delta \,\in \,\left( 0,\,\delta \left( K \right) \right)$ we have
$\text{Vol}\left( {{K}_{\delta }} \right)\,\cdot \,\text{Vol}\left( {{\left( {{K}_{\delta }} \right)}^{*}} \right)\,\ge \,\text{Vol}\left( K \right)\,\cdot \,\text{Vol}\left( {{K}^{*}} \right)\,\ge \,\text{Vol}\left( {{K}^{\delta }} \right)\,\cdot \,\text{Vol}\left( {{\left( {{K}^{\delta }} \right)}^{*}} \right)$, where
${{K}_{\delta }}$,
${{K}^{\delta }}$ and
${{K}^{*}}$ stand for the convex floating body, the illumination body, and the polar of
$K$, respectively. We derive a few consequences of these inequalities.