We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When $p$ is an odd prime, Delbourgo observed that any Kubota–Leopoldt $p$-adic $L$-function, when multiplied by an auxiliary Euler factor, can be written as an infinite sum. We shall establish such expressions without restriction on $p$, and without the Euler factor when the character is non-trivial, by computing the periods of appropriate measures. As an application, we will reprove the Ferrero–Greenberg formula for the derivative $L_p'(0,\chi )$. We will also discuss the convergence of sum expressions in terms of elementary $p$-adic analysis, as well as their relation to Stickelberger elements; such discussions in turn give alternative proofs of the validity of sum expressions.
We show that the extrapolation to the case of global fields of characteristic p of a question posed by Stark in 1980, regarding abelian L-functions of order of vanishing 2 at s = 0, has a negative answer. We provide links between various versions of Stark's question and a natural refinement of Brumer's conjecture, in the general context of global fields of arbitrary characteristic. As a consequence, we show that the refinement of Brumer's conjecture is, in general, false for characteristic p global fields.
We study the Stickelberger element of a cyclic extension of global fields of prime power degree. Assuming that S contains an almost splitting place, we show that the Stickelberger element is contained in a power of the relative augmentation ideal whose exponent is at least as large as Gross's prediction. This generalizes the work of Tate (see Section 4) on a refinement of Gross's conjecture in the cyclic case. We also present an example for which Tate's prediction does not hold.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.