We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cognitive and psychiatric symptoms are frequently reported after SARS-CoV-2 infection, but their interplay has been only partially explored. We investigated frequency and severity of psychiatric symptoms in patients with persistent cognitive complaints after COVID-19.
Methods
We conducted a cross-sectional study. Neurologists assessed 101 patients reporting cognitive symptoms after COVID-19. Patients were invited to fill a screening battery with self-reported psychometric scales (Depression Anxiety Stress Scales-21, Impact of Event Scale-Revised, Insomnia Severity Index). Patients scoring above validated cut-offs in ≥1 scale were referred to psychiatrists who administered the Mini-International Neuropsychiatric Interview (M.I.N.I.), Hamilton Anxiety (HAM-A), and Hamilton Depression (HAM-D) rating scales and asked to complete the Personality Inventory for DSM-5-Brief Form (PID-5-BF).
Results
Out of the 57 referred patients, 38 (64.4%) accepted to undergo the psychiatric examination. Among these, 18 (47.4%) were diagnosed with adjustment disorder (23.7%), anxiety disorder (10.5%), major depressive disorder (7.9%), and post-traumatic stress disorder (2.6%). Pharmacologic treatment before post-COVID condition (present in 12 patients, 31.6%) was associated with a score above cut-off on the HAM-A and HAM-D scales. A longer duration of untreated psychiatric illness after COVID-19 was associated with worse scores on the same scales. Patients with a higher PID-5-BF total score had a higher probability of receiving a psychiatric diagnosis.
Conclusion
Almost half of patients with post-COVID-19 conditions reporting cognitive symptoms were found to suffer from a psychiatric condition after psychiatric evaluation. The application of a psychiatric screening in a population suffering from long-term effects of COVID-19 can lead to early diagnosis and timely treatment.
Individuals who have recovered from the acute stage of SARS-CoV-2 infection may be at risk of developing post-COVID-19 condition (PCC), characterised by a spectrum of persisting, non-specific, and functionally impairing symptoms across multiple organ systems. Obesity has been implicated as a risk factor for PCC, mediated by chronic systemic inflammation. The foregoing has also been separately reported to mediate cognitive dysfunction in PCC.
Methods:
This is a post-hoc analysis of a randomised, double-blinded, placebo-controlled clinical trial evaluating vortioxetine treatment for cognitive impairments in persons with PCC who received vortioxetine or placebo for eight weeks. This analysis comprises baseline data, examining the impact of BMI on cognitive functioning measured by the Digit Symbol Substitution Test (DSST) and Trails Making Tests (TMT)-A/B, as well as inflammation, via serum c-reactive protein (CRP) and erythrocyte sedimentation rate (ESR).
Results:
Complete data from 70 participants were statistically analysed and adjusted for age and sex. BMI was negatively correlated with performance on the DSST (β = −0.003, p = 0.047), TMT-A (β = −0.006, p = 0.025), and TMT-B (β = −0.006, p = 0.002). BMI was positively correlated with serum CRP (unstandardized β = 0.193, standardized β = 0.612, p < 0.001) and ESR (β = 0.039, p < 0.001) levels.
Conclusion:
We observed a significant negative correlation between BMI and cognitive functioning, and a significant positive correlation between BMI and inflammation in persons with PCC, suggesting a bidirectional interplay between BMI, PCC, and cognitive function; individuals with an elevated BMI may be at a greater risk of developing PCC and/or presenting with greater cognitive deficits mediated by chronic systemic inflammation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.