We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that given a cut-and-project scheme $(G, H, \mathcal {L})$ and a compact window $W \subseteq H$, the natural projection gives a bijection between the Fourier transformable measures on $G \times H$ supported inside the strip ${\mathcal L} \cap (G \times W)$ and the Fourier transformable measures on G supported inside ${\LARGE \curlywedge }(W)$. We provide a closed formula relating the Fourier transform of the original measure and the Fourier transform of the projection. We show that this formula can be used to re-derive some known results about Fourier analysis of measures with weak Meyer set support.
We give a characterization of inter-model sets with Euclidean internal space. This characterization is similar to previous results for general inter-model sets obtained independently by Baake, Lenz and Moody, and Aujogue. The new ingredients are two additional conditions. The first condition is on the rank of the abelian group generated by the set of internal differences. The second condition is on a flow on a torus defined via the address map introduced by Lagarias. This flow plays the role of the maximal equicontinuous factor in the previous characterizations.
In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We show that the case when the ratios are linearly dependent over
${\mathbb Z}$
is trivial and focus on arithmetic progressions for which the ratios are linearly independent. Given a Meyer set
$\Lambda $
and a fully Euclidean model set with the property that finitely many translates of cover
$\Lambda $
, we prove that we can find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios in
$\Lambda $
if and only if k is at most the rank of the
${\mathbb Z}$
-module generated by . We use this result to characterize the Meyer sets that are subsets of fully Euclidean model sets.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.