Let
$D$ be an integral domain,
${{X}^{1}}\left( D \right)$ be the set of height-one prime ideals of
$D$,
$\left\{ {{X}_{\beta }} \right\}$ and
$\left\{ {{X}_{\alpha }} \right\}$ be two disjoint nonempty sets of indeterminates over
$D$,
$D\left[ \left\{ {{X}_{\beta }} \right\} \right]$ be the polynomial ring over
$D$, and
$D\left[ \left\{ {{X}_{\beta }} \right\} \right]{{\left[\!\left[ \left\{ {{X}_{\alpha }} \right\} \right]\!\right]}_{1}}$ be the first type power series ring over
$D\left[ \left\{ {{X}_{\beta }} \right\} \right]$. Assume that
$D$ is a Prüfer
$v$-multiplication domain
$\left( \text{P}v\text{MD} \right)$ in which each proper integral
$t$-ideal has only finitely many minimal prime ideals (e.g.,
$t$-
$\text{SFT}$
$\text{P}v\text{MDs}$, valuation domains, rings of Krull type). Among other things, we show that if
${{X}^{1}}\left( D \right)\,=\,\phi$ or
${{D}_{p}}$ is a
$\text{DVR}$ for all
$P\,\in \,{{X}^{1}}\left( D \right)$, then
$D\left[ \left\{ {{X}_{\beta }} \right\} \right]{{\left[\!\left[ \left\{ {{X}_{\alpha }} \right\} \right]\!\right]}_{1D-\left\{ 0 \right\}}}$ is a Krull domain. We also prove that if
$D$ is a
$t$-
$\text{SFT}\text{P}v\text{MD}$, then the complete integral closure of
$D$ is a Krull domain and
$\text{ht}\left( M\left[ \left\{ {{X}_{\beta }} \right\} \right]{{\left[\!\left[ \left\{ {{X}_{\alpha }} \right\} \right]\!\right]}_{1}} \right)\,=\,1$ for every height-one maximal
$t$-ideal
$M$ of
$D$.