We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Alongside the analogy between maximal ideals and complete theories, the Jacobson radical carries over from ideals of commutative rings to theories of propositional calculi. This prompts a variant of Lindenbaum’s Lemma that relates classical validity and intuitionistic provability, and the syntactical counterpart of which is Glivenko’s Theorem. The Jacobson radical in fact turns out to coincide with the classical deductive closure. As a by-product we obtain a possible interpretation in logic of the axioms-as-rules conservation criterion for a multi-conclusion Scott-style entailment relation over a single-conclusion one.
This paper is about rings $R$ for which every element is a sum of a tripotent and an element from the Jacobson radical $J(R)$. These rings are called semi-tripotent rings. Examples include Boolean rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many characterizations of semi-tripotent rings are obtained. Necessary and sufficient conditions for a Morita context (respectively, for a group ring of an abelian group or a locally finite nilpotent group) to be semi-tripotent are proved.
We prove two approximations of the open problem of whether the adjoint group of a non-nilpotent nil ring can be finitely generated. We show that the adjoint group of a non-nilpotent Jacobson radical cannot be boundedly generated and, on the other hand, construct a finitely generated, infinite-dimensional nil algebra whose adjoint group is generated by elements of bounded torsion.
We prove that an integral Jacobson radical ring is always nil, which extends a well-known result from algebras over fields to rings. As a consequence we show that if every element x of a ring R is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With these results we are able to give new characterizations of the upper nilradical of a ring and a new class of rings that satisfy the Köthe conjecture: namely, the integral rings.
We provide necessary and sufficient conditions for a skew polynomial ring of derivation type to be semiprimitive when the base ring has no nonzero nil ideals. This extends existing results on the Jacobson radical of skew polynomial rings of derivation type.
We consider semicrossed products of the disk algebra with respect to endomorphisms defined by finite Blaschke products. We characterize the Jacobson radical of these operator algebras. Furthermore, in the case that the finite Blaschke product is elliptic, we show that the semicrossed product contains no nonzero quasinilpotent elements. However, if the finite Blaschke product is hyperbolic or parabolic with positive hyperbolic step, the Jacobson radical is nonzero and a proper subset of the set of quasinilpotent elements.
We give a negative answer to the question raised by Mart Abel about whether his proposed definition of ${K}_{0} $ and ${K}_{1} $ groups in terms of quasi multiplication is indeed equivalent to the established ones in algebraic $K$-theory.
It is shown that the topologically irreducible representations of a normed
algebra define a certain topological radical in the same way that the
strictly irreducible representations define the Jacobson radical and that this radical can be strictly smaller than the Jacobson radical. An abstract theory of ‘topological radicals’ in topological algebras is developed and used to relate this radical to the Baer radical (prime radical). The relations with topologically transitive representations and standard representations in the sense of Meyer are also explored.