Abstract. Let
$H$ be the Hilbert class field of a
$\text{CM}$ number field
$K$ with maximal totally real subfield
$F$ of degree
$n$ over
$\mathbb{Q}$. We evaluate the second term in the Taylor expansion at
$s\,=\,0$ of the Galois-equivariant
$L$-function
${{\Theta }_{{{S}_{\infty }}\,}}\left( s \right)$ associated to the unramified abelian characters of
$\text{Gal}\left( H/K \right)$. This is an identity in the group ring
$\mathbb{C}\left[ \text{Gal}\left( H/K \right) \right]$ expressing
$\Theta _{{{S}_{\infty }}}^{(n)}\,\left( 0 \right)$ as essentially a linear combination of logarithms of special values
$\left\{ \Psi ({{z}_{\sigma }}) \right\}$, where
$\Psi :\,{{\mathbb{H}}^{n}}\,\to \,\mathbb{R}$ is a Hilbert modular function for a congruence subgroup of
$S{{L}_{2}}\left( {{\mathcal{O}}_{F}} \right)$ and
$\left\{ {{z}_{\sigma }}\,:\,\sigma \,\in \,\text{Gal}\left( H/K \right) \right\}$ are
$\text{CM}$ points on a universal Hilbert modular variety. We apply this result to express the relative class number
${{h}_{H}}/{{h}_{K}}$ as a rational multiple of the determinant of an
$\left( {{h}_{K}}\,-\,1 \right)\,\times \,\left( {{h}_{K}}\,-\,1 \right)$ matrix of logarithms of ratios of special values
$\Psi ({{z}_{\sigma }})$, thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula for
$\Psi ({{z}_{\sigma }})$ in terms of exponentials of special values of
$L$-functions.