We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The association between economic variables and the frequency and duration of disability income insurance (DII) claims is well established. Across many jurisdictions, heightened levels of unemployment have been associated with both a higher incidence and a longer duration of DII claims. This motivated us to derive an asset portfolio for which the total asset value moves in line with the level of unemployment, thus, providing a natural match for the DII portfolio liabilities. To achieve this, we develop an economic tracking portfolio where the asset weights in the portfolio are chosen so that the portfolio value changes in a way that reflects, as closely as possible, the level of unemployment. To the best of our knowledge, this is the first paper applying economic tracking portfolios to hedge economic risk in DII. The methodology put forward to establish this asset-liability matching portfolio is illustrated using DII data from the UK between 2004 and 2016. The benefits of our approach for claims reserving in DII portfolios are illustrated using a simulation study.
The emergence of COVID-19 has resulted in a notable rise in mortality rates, consequently affecting various sectors, including the insurance industry. This paper analyzes the reflections of a sudden increase in mortality rates on the financial performance of a survival benefit scenario under the International Financial Reporting Standard 17. For this purpose, we thoroughly examined a single insurance scenario under four different states by modifying the interest and jump elements. We use Poisson-log bilinear Lee–Carter and Vasicek models for mortality and stochastic interest rate, respectively. Integrating the mortality model with a jump model that incorporates COVID-19 deaths we constructed a temporary mortality jump model. As a result, the temporary mortality jump model reflects the effects of the pandemic more realistically. We observe that even in this case mortality has a minor impact, whereas interest rates significantly still affect the financial position and performance of insurance companies.
During the late eighteenth and early nineteenth centuries, mutual associations predominated in insuring the large fleet of ships that carried coal from Britain's northeast to London and other ports. The number of associations grew rapidly from the late 1770s, initially on the Tyne, then spreading to other ports on the east coast. They largely saw off the challenge from joint-stock companies created after the liberalisation of the marine insurance market in 1824. Low administrative and legal costs and the ability to mobilise local knowledge to minimise risks allowed the associations to offset the disadvantage of insuring vessels in the same trade facing similar adversities. This article discusses how mutual associations were organised and operated, traces their development on the Tyne and the competition they encountered there from Lloyd's of London and joint-stock insurance companies, and examines the incidence of mutual associations elsewhere in Britain.
We use Benford's law to examine the non-random elements of health care costs. We find that as health care expenditures increase, the conformity to the expected distribution of naturally occurring numbers worsens, indicating a tendency towards inefficient treatment. Government insurers follow Benford's law better than private insurers indicating more efficient treatment. Surprisingly, self-insured patients suffer the most from non-clinical cost factors. We suggest that cost saving efforts to reduce non-clinical expenses should be focused on more severe, costly encounters. Doing so focuses cost reduction efforts on less than 10% of encounters that constitute over 70% of dollars spent on health care treatment.
Reinsurers may default when they have to pay large claims to insurers but are unable to fulfill their obligations due to various reasons such as catastrophic events, underwriting losses, inadequate capitalization, or financial mismanagement. This paper studies the problem of optimal reinsurance design from the perspectives of both the insurer and reinsurer when the insurer faces the potential default risk of the reinsurer. If the insurer aims to minimize the convex distortion risk measure of his retained loss, we prove the optimality of a stop-loss treaty when the promised ceded loss function is charged by the expected value premium principle and the reinsurer offers partial recovery in the event of default. For any fixed premium loading set by the reinsurer, we then derive the explicit expressions of optimal deductible levels for three special distortion functions, including the TVaR, Gini, and PH transform distortion functions. Under these three explicit distortion risk measures adopted by the insurer, we seek the optimal safety loading for the reinsurer by maximizing her net profit where the reserve capital is determined by the TVaR measure and the cost is governed by the expectation. This procedure ultimately leads to the Bowley solution between the insurer and the reinsurer. We provide several numerical examples to illustrate the theoretical findings. Sensitivity analyses demonstrate how different settings of default probability, recovery rate, and safety loading affect the optimal deductible values. Simulation studies are also implemented to analyze the effects induced by the default probability and recovery rate on the Bowley solution.
This paper proposes a theoretical insurance model to explain well-documented loss underreporting and to study how strategic underreporting affects insurance demand. We consider a utility-maximizing insured who purchases a deductible insurance contract and follows a barrier strategy to decide whether she should report a loss. The insurer adopts a bonus-malus system with two rate classes, and the insured will move to or stay in the more expensive class if she reports a loss. First, we fix the insurance contract (deductibles) and obtain the equilibrium reporting strategy in semi-closed form. A key result is that the equilibrium barriers in both rate classes are strictly greater than the corresponding deductibles, provided that the insured economically prefers the less expensive rate class, thereby offering a theoretical explanation to underreporting. Second, we study an optimal deductible insurance problem in which the insured strategically underreports losses to maximize her utility. We find that the equilibrium deductibles are strictly positive, suggesting that full insurance, often assumed in related literature, is not optimal. Moreover, in equilibrium, the insured underreports a positive amount of her loss. Finally, we examine how underreporting affects the insurer’s expected profit.
In the traditional multidimensional credibility models developed by Jewell ((1973) Operations Research Center, pp. 73–77.), the estimation of the hypothetical mean vector involves complex matrix manipulations, which can be challenging to implement in practice. Additionally, the estimation of hyperparameters becomes even more difficult in high-dimensional risk variable scenarios. To address these issues, this paper proposes a new multidimensional credibility model based on the conditional joint distribution function for predicting future premiums. First, we develop an estimator of the joint distribution function of a vector of claims using linear combinations of indicator functions based on past observations. By minimizing the integral of the expected quadratic distance function between the proposed estimator and the true joint distribution function, we obtain the optimal linear Bayesian estimator of the joint distribution function. Using the plug-in method, we obtain an explicit formula for the multidimensional credibility estimator of the hypothetical mean vector. In contrast to the traditional multidimensional credibility approach, our newly proposed estimator does not involve a matrix as the credibility factor, but rather a scalar. This scalar is composed of both population information and sample information, and it still maintains the essential property of increasingness with respect to the sample size. Furthermore, the new estimator based on the joint distribution function can be naturally extended and applied to estimate the process covariance matrix and risk premiums under various premium principles. We further illustrate the performance of the new estimator by comparing it with the traditional multidimensional credibility model using bivariate exponential-gamma and multivariate normal distributions. Finally, we present two real examples to demonstrate the findings of our study.
High-cardinality categorical features are pervasive in actuarial data (e.g., occupation in commercial property insurance). Standard categorical encoding methods like one-hot encoding are inadequate in these settings.
In this work, we present a novel Generalised Linear Mixed Model Neural Network (“GLMMNet”) approach to the modelling of high-cardinality categorical features. The GLMMNet integrates a generalised linear mixed model in a deep learning framework, offering the predictive power of neural networks and the transparency of random effects estimates, the latter of which cannot be obtained from the entity embedding models. Further, its flexibility to deal with any distribution in the exponential dispersion (ED) family makes it widely applicable to many actuarial contexts and beyond. In order to facilitate the application of GLMMNet to large datasets, we use variational inference to estimate its parameters—both traditional mean field and versions utilising textual information underlying the high-cardinality categorical features.
We illustrate and compare the GLMMNet against existing approaches in a range of simulation experiments as well as in a real-life insurance case study. A notable feature for both our simulation experiment and the real-life case study is a comparatively low signal-to-noise ratio, which is a feature common in actuarial applications. We find that the GLMMNet often outperforms or at least performs comparably with an entity-embedded neural network in these settings, while providing the additional benefit of transparency, which is particularly valuable in practical applications.
Importantly, while our model was motivated by actuarial applications, it can have wider applicability. The GLMMNet would suit any applications that involve high-cardinality categorical variables and where the response cannot be sufficiently modelled by a Gaussian distribution, especially where the inherent noisiness of the data is relatively high.
The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss models, that is of compound Poisson type, are not consistent with Mack’s distribution-free chain ladder. However, for a sequence of compound Poisson loss models indexed by exposure (e.g., number of contracts), we show that the chain ladder predictor and Mack’s estimator of conditional mean squared error of prediction can be derived by considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with Mack’s estimator without relying on the validity of the model assumptions of the distribution-free chain ladder.
Sickness insurance companies were developed in Spain by doctors and healthcare professionals, remaining outside the interests of general insurance companies. Their management was hardly professional, with limited actuarial techniques and they only accounted for a small percentage of total insurance business premiums. From the 1970s onwards, various factors changed this situation, driving processes of concentration, with numerous takeovers and mergers, first reducing the number of local and regional companies to the benefit of companies of national scope. Subsequently, the growth in demand for this type of coverage sparked the interest of national general insurance companies and multinationals, leading to a restructuring of the sector which has progressively acquired greater weight within the insurance business and become increasingly internationalised. This last stage immersed the health sector in Spain in the great processes of globalisation of the sector, characterised by a financialisation of capital promoted by the bank investment funds. These processes are little known and are the focus of analysis of this paper, with the aim of enabling comparison at international level.
In this paper, we explore how to design the optimal insurance contracts when the insured faces insurable, counterparty, and additive background risk simultaneously. The target is to minimize the mean-variance of the insured’s loss. By utilizing the calculus of variations, an implicit characterization of the optimal ceded loss function is given. An explicit structure of the optimal ceded loss function is also provided by making full use of its implicit characterization. We further derive a much simpler solution when these three kinds of risk have some special dependence structures. Finally, we give a numerical example to illustrate our results.
Community Rating System (CRS) incentivizes investments in risk reduction above NFIP standards using discounts on insurance premiums. These discounts are cross-subsidized by increasing premiums in non-CRS communities. We examine the distribution of these subsidies and find that redistribution does occur, but the gains and losses are not economically large with 95% of households gaining or losing no more than 0.3% of household income. We also examine their relationship with other community characteristics and find that the strongest predictor of premium reductions is the underlying flood risk level within the community. Thus, CRS appears to reduce the cost of living in the riskier communities.
This paper considers variable annuity (VA) contracts embedded with guaranteed minimum accumulation benefit (GMAB) riders when policyholder’s proceeds are taxed upon early surrender or maturity. These contracts promise the return of the premium paid by the policyholder, or a higher rolled-up value, at the end of the investment period. A partial differential equation valuation framework which exploits the numerical method of lines is used to determine fair fees that render the policyholder and insurer breakeven. Two taxation regimes are considered: one where capital gains are allowed to offset losses and a second where gains do not offset losses. Most insurance providers highlight the tax-deferred features of VA contracts. We show that the regime under which the insured is taxed significantly impacts prices. If losses are allowed to offset gains then this enhances the market, increasing the policyholder’s willingness to participate in the market compared to the case when losses are not allowed to offset gains. With fair fees from the policyholder’s perspective, we show that the net profit is generally positive for insurance companies offering the contract as a naked option without any hedge. We also show how investment policy, as reflected in the Sharpe ratio, impacts and interacts with policyholder persistency.
Strengthening climate resilience requires farmers to select climate adaptation strategies like weather index insurance. Acknowledging that decision-making is not isolated, this study explores simultaneous peer imitation in climate adaptation choices consisting of index insurance, savings, and their interaction. We present results from a lab-in-the-field experiment that introduces innovative index insurance. Findings indicate significant and strong imitation attitudes. While the bigger peer surrounding seems relevant in the static perspective, the closer surrounding gains importance in the dynamic perspective. Additionally, credit, trust, and practical understanding stimulate adoption. Community-based extension interventions and credit-bundled products may increase index insurance diffusion and improve climate resilience.
We consider the holder of an individual tontine retirement account, with maximum and minimum withdrawal amounts (per year) specified. The tontine account holder initiates the account at age 65 and earns mortality credits while alive, but forfeits all wealth in the account upon death. The holder wants to maximize total withdrawals and minimize expected shortfall at the end of the retirement horizon of 30 years (i.e., it is assumed that the holder survives to age 95). The holder controls the amount withdrawn each year and the fraction of the retirement portfolio invested in stocks and bonds. The optimal controls are determined based on a parametric model fitted to almost a century of market data. The optimal control algorithm is based on dynamic programming and the solution of a partial integro differential equation (PIDE) using Fourier methods. The optimal strategy (based on the parametric model) is tested out of sample using stationary block bootstrap resampling of the historical data. In terms of an expected total withdrawal, expected shortfall (EW-ES) efficient frontier, the tontine overlay dramatically outperforms an optimal strategy (without the tontine overlay), which in turn outperforms a constant weight strategy with withdrawals based on the ubiquitous four per cent rule.
Although potentially useful for financially hedging systemic weather-related risks, weather contracts/derivatives (also referred to as parametric insurance) have not seen wide adoption in agriculture outside of applications in developing countries, frequently supported by governments and non-governmental organizations (NGOs). A significant impediment is the lack of financial firms willing to stand ready to sell weather derivatives to individual agricultural producers in the over-the-counter market who, due to the localized nature of weather, face idiosyncratic weather-related risks. In particular, the administrative and reinsurance costs of supplying relatively small contracts with specific terms to many different producers are often prohibitive. The current study considers the potential use of weather derivatives in hedging the aggregate yield/revenues of viticulture producers represented by an industry association located in the province of Ontario, Canada. We examine the sensitivity of aggregate industry yields to several relevant weather-related risks employing copula function analysis. We then consider the potential of a weather derivative in hedging the financial risk associated with cold winter temperatures, which pose the greatest risk to aggregate vinifera yields. The issue of attributing costs and payouts to individual association members remains unresolved, and several alternatives are suggested.
We study the optimal investment-reinsurance problem in the context of equity-linked insurance products. Such products often have a capital guarantee, which can motivate insurers to purchase reinsurance. Since a reinsurance contract implies an interaction between the insurer and the reinsurer, we model the optimization problem as a Stackelberg game. The reinsurer is the leader in the game and maximizes its expected utility by selecting its optimal investment strategy and a safety loading in the reinsurance contract it offers to the insurer. The reinsurer can assess how the insurer will rationally react on each action of the reinsurer. The insurance company is the follower and maximizes its expected utility by choosing its investment strategy and the amount of reinsurance the company purchases at the price offered by the reinsurer. In this game, we derive the Stackelberg equilibrium for general utility functions. For power utility functions, we calculate the equilibrium explicitly and find that the reinsurer selects the largest reinsurance premium such that the insurer may still buy the maximal amount of reinsurance. Since in the equilibrium the insurer is indifferent in the amount of reinsurance, in practice, the reinsurer should consider charging a smaller reinsurance premium than the equilibrium one. Therefore, we propose several criteria for choosing such a discount rate and investigate its wealth-equivalent impact on the expected utility of each party.
Mortality shocks such as the one induced by the COVID-19 pandemic have substantial impact on mortality models. We describe how to deal with them in the period effect of the Lee–Carter model. The main idea is to not rely on the usual normal distribution assumption as it is not always justified. We consider a mixture distribution model based on the peaks-over-threshold method, a jump model, and a regime switching model and introduce a modified calibration procedure to account for the fact that varying amounts of data are necessary for calibrating different parts of these models. We perform an extensive empirical study for nine European countries, comparing the models with respect to their parameters, quality of fit, and forecasting performance. Moreover, we define five exemplary scenarios regarding the future development of pandemic-related mortality. As a result of our evaluations, we recommend the peaks-over-threshold approach for applications with a possibility of extreme mortality events.
The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.
This paper studies dynamic reinsurance contracting and competition problems under model ambiguity in a reinsurance market with one primary insurer and n reinsurers, who apply the variance premium principle and who are distinguished by their levels of ambiguity aversion. The insurer negotiates reinsurance policies with all reinsurers simultaneously, which leads to a reinsurance tree structure with full competition among the reinsurers. We model the reinsurance contracting problems between the insurer and reinsurers by Stackelberg differential games and the competition among the reinsurers by a non-cooperative Nash game. We derive equilibrium strategies in semi-closed form for all the companies, whose objective is to maximize their expected surpluses penalized by a squared-error divergence term that measures their ambiguity. We find that, in equilibrium, the insurer purchases a positive amount of proportional reinsurance from each reinsurer. We further show that the insurer always prefers the tree structure to the chain structure, in which the risk of the insurer is shared sequentially among all reinsurers.