Consider the equation
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0308210516000524/resource/name/S0308210516000524_equ01.gif?pub-status=live)
where
are linear positive continuous operators and f : Cloc(ℝ;ℝ) → Lloc(ℝ;ℝ) is a continuous operator satisfying the local Carathéodory conditions. Efficient conditions guaranteeing the existence of a global solution, which is bounded and non-negative in the neighbourhood of –∞, to the equation considered are established provided that ℓ0, ℓ1 and f are Volterra-type operators. The existence of a solution that is positive on the whole real line is discussed as well. Furthermore, the asymptotic properties of such solutions are studied in the neighbourhood of –∞. The results are applied to certain models appearing in the natural sciences.