The paper studies large time behaviour of solutions to the Keller–Segel system with quadratic degradation in a liquid environment, as given by
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0308210518000057/resource/name/S0308210518000057_equ01.gif?pub-status=live)
under Neumann boundary conditions in a bounded domain Ω ⊂ ℝn, where n ≥ 1 is arbitrary. It is shown that whenever U : Ω × (0,∞) → ℝn is a bounded and sufficiently regular solenoidal vector field any non-trivial global bounded solution of (⋆) approaches the trivial equilibrium at a rate that, with respect to the norm in either of the spaces L1(Ω) and L∞(Ω), can be controlled from above and below by appropriate multiples of 1/(t + 1). This underlines that, even up to this quantitative level of accuracy, the large time behaviour in (⋆) is essentially independent not only of the particular fluid flow, but also of any effect originating from chemotactic cross-diffusion. The latter is in contrast to the corresponding Cauchy problem, for which known results show that in the n = 2 case the presence of chemotaxis can significantly enhance biomixing by reducing the respective spatial L1 norms of solutions.