A construction is given of a process
in which X(t) represents the content at time t of a dam whose cumulative input process
is a Lévy process with measure v and whose release rate at time t is r(X(t)). It is assumed only that r(0) = 0 and that r is strictly positive and left-continuous with strictly positive finite right limits on (0,∞). The sample-paths of X are shown to satisfy the storage equation
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0001867800020516/resource/name/S0001867800020516_eqnU1.gif?pub-status=live)
The process X is analyzed using renewal theory and stochastic comparison techniques, and necessary and sufficient conditions are found in terms of v and r for X to have a stationary distributionπ. These generalize previous results which were obtained under the assumption that v is finite. Conditions for Πto have an atom at 0 are considered in some detail, and related results on the positivity of the expected occupation time of level 0 are given.
Necessary and sufficient conditions for the existence of Πare expressed in terms of the existence of non-negative integrable solutions of certain integral equations and conditions are given under which such solutions are necessarily stationary densities for X. A simple sufficient condition for X to have a stationary distribution is found in terms of
and in the case when r is non-decreasing the condition is shown to be also necessary. Finally some examples are considered; these show that the results described above unify various known conditions in special cases, and confirm several conjectures in the related literature.