We explicitly describe the best approximation in geodesic submanifolds of positive definite matrices obtained from involutive congruence transformations on the Cartan-Hadamard manifold
$\text{Sym(}n\text{,}\,\mathbb{R}{{\text{)}}^{++}}$ of positive definite matrices. An explicit calculation for the minimal distance function from the geodesic submanifold
$\text{Sym(}p\text{,}\,\mathbb{R}{{\text{)}}^{++}}\,\times \,\text{Sym(}q\text{,}\,\mathbb{R}{{\text{)}}^{++}}$ block diagonally embedded in
$\text{Sym(}n\text{,}\,\mathbb{R}{{\text{)}}^{++}}$ is given in terms of metric and spectral geometric means, Cayley transform, and Schur complements of positive definite matrices when
$p\,\le \,2$ or
$q\,\le \,2$.