We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a novel time-asymptotically stable, implicit–explicit, adaptive, time integration method (denoted by the $\theta $-method) for the solution of the fractional advection–diffusion-reaction (FADR) equations. The spectral analysis of the method (involving the group velocity and the phase speed) indicates a region of favourable dispersion for a limited range of Péclet number. The numerical inversion of the coefficient matrix is avoided by exploiting the sparse structure of the matrix in the iterative solver for the Poisson equation. The accuracy and the efficacy of the method is benchmarked using (a) the two-dimensional fractional diffusion equation, originally proposed by researchers earlier, and (b) the incompressible, subdiffusive dynamics of a planar viscoelastic channel flow of the Rouse chain melts (FADR equation with fractional time-derivative of order ) and the Zimm chain solution (). Numerical simulations of the viscoelastic channel flow effectively capture the nonhomogeneous regions of high viscosity at low fluid inertia (or the so-called “spatiotemporal macrostructures”), experimentally observed in the flow-instability transition of subdiffusive flows.
The computational work and storage of numerically solving the time fractional PDEs are generally huge for the traditional direct methods since they require total memory and work, where NT and NS represent the total number of time steps and grid points in space, respectively. To overcome this difficulty, we present an efficient algorithm for the evaluation of the Caputo fractional derivative of order α∈(0,1). The algorithm is based on an efficient sum-of-exponentials (SOE) approximation for the kernel t–1–α on the interval [Δt, T] with a uniform absolute error ε. We give the theoretical analysis to show that the number of exponentials Nexp needed is of order for T≫1 or for TH1 for fixed accuracy ε. The resulting algorithm requires only storage and work when numerically solving the time fractional PDEs. Furthermore, we also give the stability and error analysis of the new scheme, and present several numerical examples to demonstrate the performance of our scheme.
In this paper, we develop an accurate and efficient Legendre wavelets method for numerical solution of the well known time-fractional telegraph equation. In the proposed method we have employed both of the operational matrices of fractional integration and differentiation to get numerical solution of the time-telegraph equation. The power of this manageable method is confirmed. Moreover the use of Legendre wavelet is found to be accurate, simple and fast.
As the generalization of the integer order partial differential equations (PDE), the fractional order PDEs are drawing more and more attention for their applications in fluid flow, finance and other areas. This paper presents high-order accurate Runge-Kutta local discontinuous Galerkin (DG) methods for one- and two-dimensional fractional diffusion equations containing derivatives of fractional order in space. The Caputo derivative is chosen as the representation of spatial derivative, because it may represent the fractional derivative by an integral operator. Some numerical examples show that the convergence orders of the proposed local Pk-DG methods are O(hk+1) both in one and two dimensions, where Pk denotes the space of the real-valued polynomials with degree at most k.
The block-by-block method, proposed by Linz for a kind of Volterra integral equations with nonsingular kernels, and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations (FDEs) with Caputo derivatives, is an efficient and stable scheme. We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order index α > 0.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.