We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A novel wideband reflectarray antenna (RA) is designed for 5G millimeter (mm) wave communications in the frequency range of 26.5–36 GHz. The proposed unit cell is constructed using a grid periodicity of 0.52${{\lambda }_0}{ }$ that offers 636° phase change through phase delay lines (PDLs) (${{\theta }_{\text{s}}}$). These PDLs are attached to the outer end of the unit cell comprising semi-circular rings. Bandwidth enhancement is achieved by incorporating a corrugated slot technique and a suitable air gap beneath the substrate. The proposed center-fed reflectarray is composed of 513 elements distributed in a circular aperture (13.46${{\lambda }_0}$). Using mirror-symmetrical distribution of the unit cells, a cross-polarization reduction as low as −50 dB is realized. At 30 GHz, RA has a measured peak gain of 28.2 dBi, a sidelobe level of −14.3 dB, and an aperture efficiency of 31.4%. The prototype antenna is fabricated, and the simulation results are experimentally validated. The measured 1-dB and 3-dB gain bandwidths of the proposed reflectarray antenna are 31.3% and 41.6%, respectively. The proposed broadband reflectarray can be a potential choice for inter-satellite services like inter-satellite networking/satellite positioning and control; fixed satellite services such as GPS satellite synchronization and data direct to home TV; and satellite position fixing.
This chapter provides basic knowledge on technologies and circuits for future communication systems. Based on upcoming mm-wave communications, system requirements are derived. E.g. link analysis is used to visualize the need for high-gain antenna systems, which are further investigated in different scenarios such as stationary and mobile use cases. The chapter further gives an overview on different tunable circuits and devices such as phase shifters for antennas systems or tunable filters. The chapter feastures an overview of different technologies available to implement the required fuinctionality. The individual technologies will be described in full detail in later chapters
The chapter introduces the Microwave Liquid Crystal Technology which features unique properties for reconfigurable systems for mm-wave communications. After an intrioduction of the material's properties, different implementations of components and systems are compared and discussed such as phase shifters, tunable filters and steerable antenna systems. These LC-based components are implemented for wide frequency range from about 10 GHz up to THz. Characterization, modelling and simulation are key for the design of such components,. Therefore, suited methodology is presented. Additionally, anliterature review on available realizations and technologies is given.
Get up to speed on the modelling, design, technologies, and applications of tunable circuits and reconfigurable mm-wave systems. Coverage includes smart antennas and frequency-agile RF components, as well as a detailed comparison of three key technologies for the design of tunable mm-wave circuits: CMOS, RF MEMS, and microwave liquid crystals, and measurement results of state-of-the-art prototypes. Numerous examples of tunable circuits and systems are included that can be practically implemented for the reader's own needs. Ideal for graduate students studying RF/microwave engineering, and researchers and engineers involved in circuit and system design for new communication platforms such as mm-wave 5G and beyond, high-throughput satellites in GSO, and future satellite constellations in MEO/LEO, as well as for automotive radars, security and biomedical mm-wave systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.