By
$\text{d(X,Y)}$ we denote the (multiplicative) Banach–Mazur distance between two normed spaces
$X$ and
$Y$. Let
$X$ be an
$n$-dimensional normed space with
$\text{d(X,}\,l_{\infty }^{n}\text{)}\,\le \,\text{2}$, where
$l_{\infty }^{n}$ stands for
${{\mathbb{R}}^{n}}$ endowed with the norm
$\parallel ({{x}_{1}},\,.\,.\,.\,,\,{{x}_{n}}){{\parallel }_{\infty }}\,:=\,\max \{|{{x}_{1}}|,\,.\,.\,.\,,\,|{{x}_{n}}|\}$. Then every metric space
$(S,\,\rho )$ of cardinality
$n+1$ with norm
$\rho $ satisfying the condition
$\max D/\min D\,\le \,2/\,\text{d(}X,\,l_{\infty }^{n}\text{)}$ for
$D\,:=\,\{\rho (a,\,b)\,:\,a,\,b\,\in \,S,\,a\,\ne \,b\}$ can be isometrically embedded into
$X$.