We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper concerns with the existence of multiple solutions for a class of elliptic problems with discontinuous nonlinearity. By using dual variational methods, properties of the Nehari manifolds and Ekeland's variational principle, we show how the ‘shape’ of the graph of the function A affects the number of nontrivial solutions.
Let Ω ⊂ ℝn be a bounded Lipschitz domain. Let $L: {\mathbb R}^n\rightarrow \bar {\mathbb R}= {\mathbb R}\cup \{+\infty \}$ be a continuous function with superlinear growth at infinity, and consider the functional $\mathcal {I}(u)=\int \nolimits _\Omega L(Du)$, u ∈ W1,1(Ω). We provide necessary and sufficient conditions on L under which, for all f ∈ W1,1(Ω) such that $\mathcal {I}(f) < +\infty $, the problem of minimizing $\mathcal {I}(u)$ with the boundary condition u|∂Ω = f has a solution which is stable, or – alternatively – is such that all of its solutions are stable. By stability of $\mathcal {I}$ at u we mean that $u_k\rightharpoonup u$ weakly in W1,1(Ω) together with $\mathcal {I}(u_k)\to \mathcal {I}(u)$ imply uk → u strongly in W1,1(Ω). This extends to general boundary data some results obtained by Cellina and Cellina and Zagatti. Furthermore, with respect to the preceding literature on existence results for scalar variational problems, we drop the assumption that the relaxed functional admits a continuous minimizer.
We present the second-order necessary and sufficient conditions for quasiconvex and pseudoconvex functions in terms of their second-order regular subdifferentials.
Using a variational approach we obtain the existence of at least three periodic solutions for discontinuous perturbations of the vector p-Laplacian operator .
This paper develops the theory of multisymplectic variational integrators for nonsmooth continuum mechanics with constraints. Typical problems are the impact of an elastic body on a rigid plate or the collision of two elastic bodies. The integrators are obtained by combining, at the continuous and discrete levels, the variational multisymplectic formulation of nonsmooth continuum mechanics with the generalized Lagrange multiplier approach for optimization problems with nonsmooth constraints. These integrators verify a spacetime multisymplectic formula that generalizes the symplectic property of time integrators. In addition, they preserve the energy during the impact. In the presence of symmetry, a discrete version of the Noether theorem is verified. All these properties are inherited from the variational character of the integrator. Numerical illustrations are presented.
In this paper, we give some Łojasiewicz-type inequalities for continuous definable functions in an o-minimal structure. We also give a necessary and sufficient condition for the existence of a global error bound and the relationship between the Palais–Smale condition and this global error bound. Moreover, we give a Łojasiewicz nonsmooth gradient inequality at infinity near the fibre for continuous definable functions in an o-minimal structure.
Using a non-smooth version (due to Marano and Motreanu) of a variational principle of Ricceri we prove the existence of infinitely many solutions for certain systems of differential inclusions with various types of boundary conditions.
We establish a second order smooth variational principle valid for functions defined on (possibly infinite-dimensional) Riemannian manifolds which are uniformly locally convex and have a strictly positive injectivity radius and bounded sectional curvature.
In this paper, a new approach to a characterization of solvability of a nonlinear nonsmooth multiobjective programming problem with inequality constraints is introduced. A family of η-approximated vector optimization problems is constructed by a modification of the objective and the constraint functions in the original nonsmooth multiobjective programming problem. The connection between (weak) efficient points in the original nonsmooth multiobjective programming problem and its equivalent η-approximated vector optimization problems is established under V-invexity. It turns out that, in most cases, solvability of a nonlinear nonsmooth multiobjective programming problem can be characterized by solvability of differentiable vector optimization problems.
This paper studies the integration of inclusion of subdifferentials. Under various verifiable conditions, we obtain that if two proper lower semicontinuous functions $f$ and $g$ have the subdifferential of $f$ included in the $\gamma $-enlargement of the subdifferential of $g$, then the difference of those functions is $\gamma $-Lipschitz over their effective domain.
We prove a strong variant of the Borwein-Preiss variational principle, and show that on Asplund spaces, Stegall's variational principle follows from it via a generalized Smulyan test. Applications are discussed.
Formulas for the Clarke subdifferential are always expressed in the form of inclusion. The equality form in these formulas generally requires the functions to be directionally regular. This paper studies the directional regularity of the general class of extended-real-valued functions that are directionally Lipschitzian. Connections with the concept of subdifferential regularity are also established.
We develop a method of separable reduction for Fréchet-like normals and $\epsilon$-normals to arbitrary sets in general Banach spaces. This method allows us to reduce certain problems involving such normals in nonseparable spaces to the separable case. It is particularly helpful in Asplund spaces where every separable subspace admits a Fréchet smooth renorm. As an applicaton of the separable reduction method in Asplund spaces, we provide a new direct proof of a nonconvex extension of the celebrated Bishop-Phelps density theorem. Moreover, in this way we establish new characterizations of Asplund spaces in terms of $\epsilon$-normals.
We construct Lipschitz functions such that for all $s>0$ they are $s$-Hölder, and so proximally, subdifferentiable only on dyadic rationals and nowhere else. As applications we construct Lipschitz functions with prescribed Hölder and approximate subderivatives.
Given an integral functional defined on ${{L}_{p}}$, $1\le p<\infty $, under a growth condition we give an upper bound of the Clarke directional derivative and we obtain a nice inclusion between the Clarke subdifferential of the integral functional and the set of selections of the subdifferential of the integrand.
Recently, F. H. Clarke and Y. Ledyaev established a multidirectional mean value theorem applicable to lower semi-continuous functions on Hilbert spaces, a result which turns out to be useful in many applications. We develop a variant of the result applicable to locally Lipschitz functions on certain Banach spaces, namely those that admit a C1-Lipschitz continuous bump function.
This paper is devoted to extending formulas for the geometric approximate subdifferential and the Clarke subdifferential of extended-real-valued functions on Banach spaces. The results are strong enough to include completely the finite dimensional setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.