In this paper we characterize the compactness of the commutator
$\left[ b,\,T \right]$ for the singular integral operator on the Morrey spaces
${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$. More precisely, we prove that if
$b\,\in \,\text{VMO}\left( {{\mathbb{R}}^{n}} \right)$, the
$\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$-closure of
$C_{c}^{\infty }\left( {{\mathbb{R}}^{n}} \right)$, then
$\left[ b,\,T \right]$ is a compact operator on the Morrey spaces
${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$ for
$1\,<\,p\,<\,\infty $ and
$0\,<\,\lambda \,<\,n$. Conversely, if
$b\,\in \,\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$ and
$\left[ b,\,T \right]$ is a compact operator on the
${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$ for some
$p\,\left( 1\,<\,p\,<\,\infty \right)$, then
$b\,\in \,\text{VMO}\left( {{\mathbb{R}}^{n}} \right)$. Moreover, the boundedness of a rough singular integral operator
$T$ and its commutator
$\left[ b,\,T \right]$ on
${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$ are also given. We obtain a sufficient condition for a subset in Morrey space to be a strongly pre-compact set, which has interest in its own right.