Abstract. The weighted mean matrix
${{M}_{a}}$ is the triangular matrix
$\left\{ {{a}_{k}}/{{A}_{n}} \right\}$, where
${{a}_{n}}\,>\,0$ and
${{A}_{n}}\,:=\,{{a}_{1}}\,+\,{{a}_{2}}\,+\cdots +\,{{a}_{n}}$. It is proved that, subject to
${{n}^{c}}{{a}_{n}}$ being eventually monotonic for each constant
$c$ and to the existence of
$\alpha \,:=\,\lim \,\frac{{{A}_{n}}}{n{{a}_{n}}},\,{{M}_{a}}\,\in \,B\left( {{l}_{p}} \right)$ for
$1\,<\,p\,<\infty $ if and only if
$\alpha \,<\,p$.