We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a holomorphic self-map
$\varphi $
of
$\mathbb {D}$
(the open unit disc in
$\mathbb {C}$
), the composition operator
$C_{\varphi } f = f \circ \varphi $
,
$f \in H^2(\mathbb {\mathbb {D}})$
, defines a bounded linear operator on the Hardy space
$H^2(\mathbb {\mathbb {D}})$
. The model spaces are the backward shift-invariant closed subspaces of
$H^2(\mathbb {\mathbb {D}})$
, which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
We show that any weakly separated Bessel system of model spaces in the Hardy space on the unit disc is a Riesz system and we highlight some applications to interpolating sequences of matrices. This will be done without using the recent solution of the Feichtinger conjecture, whose natural generalization to multidimensional model subspaces of
${\mathrm {H}}^2$
turns out to be false.
This note characterizes, in terms of interpolating Blaschke products, the symbols of Hankel operators essentially commuting with all quasicontinuous Toeplitz operators on the Hardy space of the unit circle. It also shows that such symbols do not contain the complex conjugate of any nonconstant singular inner function.
For an inner function u, we discuss the dual operator for the compressed shift $P_u S|_{{\mathcal {K}}_u}$, where ${\mathcal {K}}_u$ is the model space for u. We describe the unitary equivalence/similarity classes for these duals as well as their invariant subspaces.
We discuss the concept of inner function in reproducing kernelHilbert spaces with an orthogonal basis of monomials and examine connections between inner functions and optimal polynomial approximants to ${1}/{f}\;$, where $f$ is a function in the space. We revisit some classical examples from this perspective, and show how a construction of Shapiro and Shields can be modiûed to produce inner functions.
In this paper we discuss the range of a co-analytic Toeplitz operator. These range spaces are closely related to de Branges–Rovnyak spaces (in some cases they are equal as sets). In order to understand its structure, we explore when the range space decomposes into the range of an associated analytic Toeplitz operator and an identifiable orthogonal complement. For certain cases, we compute this orthogonal complement in terms of the kernel of a certain Toeplitz operator on the Hardy space, where we focus on when this kernel is a model space (backward shift invariant subspace). In the spirit of Ahern–Clark, we also discuss the non-tangential boundary behavior in these range spaces. These results give us further insight into the description of the range of a co-analytic Toeplitz operator as well as its orthogonal decomposition. Our Ahern–Clark type results, which are stated in a general abstract setting, will also have applications to related sub-Hardy Hilbert spaces of analytic functions such as the de Branges–Rovnyak spaces and the harmonically weighted Dirichlet spaces.
An asymptotically orthonormal sequence is a sequence that is nearly orthonormal in the sense that it satisfies the Parseval equality up to two constants close to one. In this paper, we explore such sequences formed by normalized reproducing kernels for model spaces and de Branges–Rovnyak spaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.