We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a complete combinatorial classification of the parabolic Verma modules in the principal block of the parabolic category $\mathcal{O}$ associated with a minimal or a maximal parabolic subalgebra of the special linear Lie algebra for which the answer to Kostant’s problem is positive.
In this paper, we investigate extensions between graded Verma modules in the Bernstein–Gelfand–Gelfand category $\mathcal{O}$. In particular, we determine exactly which information about extensions between graded Verma modules is given by the coefficients of the R-polynomials. We also give some upper bounds for the dimensions of graded extensions between Verma modules in terms of Kazhdan–Lusztig combinatorics. We completely determine all extensions between Verma module in the regular block of category $\mathcal{O}$ for $\mathfrak{sl}_4$ and construct various “unexpected” higher extensions between Verma modules.
A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category $\mathrm {Vect}(\mathbb {F}_1)$ of vector spaces “over $\mathbb {F}_1$” (the field with one element), one obtains $\mathbb {F}_1$-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category $\mathrm {Rep}(Q,\mathbb {F}_1)$ is equivalent to the (suitably defined) category of coefficient quivers over Q. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “$\mathbb {F}_1$-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with $\mathbb {F}_1$-representations. These techniques apply to a large class of $\mathbb {F}_1$-representations, which we call the $\mathbb {F}_1$-representations with finite nice length: we prove sufficient conditions for an $\mathbb {F}_1$-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with $\mathbb {F}_1$-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent $\mathbb {F}_1$-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.
For complex simple Lie algebras of types B, C, and D, we provide new explicit formulas for the generators of the commutative subalgebra $\mathfrak z(\hat {\mathfrak g})\subset {{\mathcal {U}}}(t^{-1}\mathfrak g[t^{-1}])$ known as the Feigin–Frenkel centre. These formulas make use of the symmetrisation map as well as of some well-chosen symmetric invariants of $\mathfrak g$. There are some general results on the rôle of the symmetrisation map in the explicit description of the Feigin–Frenkel centre. Our method reduces questions about elements of $\mathfrak z(\hat {\mathfrak g})$ to questions on the structure of the symmetric invariants in a type-free way. As an illustration, we deal with type G$_2$ by hand. One of our technical tools is the map ${\sf m}\!\!: {{\mathcal {S}}}^{k}(\mathfrak g)\to \Lambda ^{2}\mathfrak g \otimes {{\mathcal {S}}}^{k-3}(\mathfrak g)$ introduced here. As the results show, a better understanding of this map will lead to a better understanding of $\mathfrak z(\hat {\mathfrak g})$.
Steinberg’s tensor product theorem shows that for semisimple algebraic groups, the study of irreducible representations of higher Frobenius kernels reduces to the study of irreducible representations of the first Frobenius kernel. In the preceding paper in this series, deforming the distribution algebra of a higher Frobenius kernel yielded a family of deformations called higher reduced enveloping algebras. In this paper, we prove that the Steinberg decomposition can be similarly deformed, allowing us to reduce representation theoretic questions about these algebras to questions about reduced enveloping algebras. We use this to derive structural results about modules over these algebras. Separately, we also show that many of the results in the preceding paper hold without an assumption of reductivity.
A classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer ${{C}_{S}}(H)$ (and some of its prime factor algebras) of the Cartan element $H$ in the universal enveloping algebra $S$ of the Schrödinger (Lie) algebra. The simple ${{C}_{S}}(H)$-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra $S$ (over the centre). It is proved that some (prime) factor algebras of $S$ and ${{C}_{S}}(H)$ are tensor homological$/$Krull minimal.
In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra sℓ(2,ℂ) and the homogenized Verma modules. The aim of this paper is to study the homogenization $\mathcal{O}$B of the Bernstein–Gelfand–Gelfand category $\mathcal{O}$ of sℓ(2,ℂ), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories $\mathcal{O}$B and $\mathcal{O}$ as well as, between the derived categories $\mathcal{D}$b($\mathcal{O}$B) and $\mathcal{D}$b($\mathcal{O}$).
This paper develops a general theory of canonical bases and how they arise naturally in the context of categorification. As an application, we show that Lusztig’s canonical basis in the whole quantized universal enveloping algebra is given by the classes of the indecomposable 1-morphisms in a categorification when the associated Lie algebra is of finite type and simply laced. We also introduce natural categories whose Grothendieck groups correspond to the tensor products of lowest- and highest-weight integrable representations. This generalizes past work of the author’s in the highest-weight case.
In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisky algebra.
In this paper, we study the homogenised algebra B of the enveloping algebra U of the Lie algebra sℓ(2,ℂ). We look first to connections between the category of graded left B-modules and the category of U-modules, then we prove B is Koszul and Artin–Schelter regular of global dimension four, hence its Yoneda algebra B! is self-injective of radical five zeros, and the structure of B! is given. We describe next the category of homogenised Verma modules, which correspond to the lifting to B of the usual Verma modules over U, and prove that such modules are Koszul of projective dimension two. It was proved in Martínez-Villa and Zacharia (Approximations with modules having linear resolutions, J. Algebra266(2) (2003), 671–697)] that all graded stable components of a self-injective Koszul algebra are of type ZA∞. Here, we characterise the graded B!-modules corresponding to the Koszul duality to homogenised Verma modules, and prove that these are located at the mouth of a regular component. In this way we obtain a family of components over a wild algebra indexed by ℂ.
Let $\mathfrak{g}=\mbox{Lie}(G)$ be the Lie algebra of a simple algebraic group $G$ over an algebraically closed field of characteristic $0$. Let $e$ be a nilpotent element of $\mathfrak{g}$ and let $\mathfrak{g}_e=\mbox{Lie}(G_e)$ where $G_e$ stands for the stabiliser of $e$ in $G$. For $\mathfrak{g}$ classical, we give an explicit combinatorial formula for the codimension of $[\mathfrak{g}_e,\mathfrak{g}_e]$ in $\mathfrak{g}_e$ and use it to determine those $e\in \mathfrak{g}$ for which the largest commutative quotient $U(\mathfrak{g},e)^{\mbox{ab}}$ of the finite $W$-algebra $U(\mathfrak{g},e)$ is isomorphic to a polynomial algebra. It turns out that this happens if and only if $e$ lies in a unique sheet of $\mathfrak{g}$. The nilpotent elements with this property are called non-singular in the paper. Confirming a recent conjecture of Izosimov, we prove that a nilpotent element $e\in \mathfrak{g}$ is non-singular if and only if the maximal dimension of the geometric quotients $\mathcal{S}/G$, where $\mathcal{S}$ is a sheet of $\mathfrak{g}$ containing $e$, coincides with the codimension of $[\mathfrak{g}_e,\mathfrak{g}_e]$ in $\mathfrak{g}_e$ and describe all non-singular nilpotent elements in terms of partitions. We also show that for any nilpotent element $e$ in a classical Lie algebra $\mathfrak{g}$ the closed subset of Specm $U(\mathfrak{g},e)^{\mbox{ab}}$ consisting of all points fixed by the natural action of the component group of $G_e$ is isomorphic to an affine space. Analogues of these results for exceptional Lie algebras are also obtained and applications to the theory of primitive ideals are given.
We use the theory of finite W-algebras associated to nilpotent orbits in the Lie algebra to give another proof of Mœglin’s theorem about completely prime primitive ideals in the enveloping algebra U(𝔤). We also make some new observations about Joseph’s Goldie rank polynomials in Cartan type A.
We construct families of irreducible representations for a class of quantum groups Uq(fm(K,H). First, we realize these quantum groups as hyperbolic algebras. Such a realization yields natural families of irreducible weight representations for Uq(fm(K,H)). Second, we study the relationship between Uq(fm(K,H)) and Uq(fm(K)). As a result, any finite-dimensional weight representation of Uq(fm(K,H)) is proved to be completely reducible. Finally, we study the Whittaker model for the center of Uq(fm(K,H)), and a classification of all irreducible Whittaker representations of Uq(fm(K,H)) is obtained.
Let $\mathfrak{n}$ be a maximal nilpotent subalgebra of a complex symmetric Kac–Moody Lie algebra. Lusztig has introduced a basis of $U(\mathfrak{n})$ called the semicanonical basis, whose elements can be seen as certain constructible functions on varieties of nilpotent modules over a preprojective algebra of the same type as $\mathfrak{n}$. We prove a formula for the product of two elements of the dual of this semicanonical basis, and more generally for the product of two evaluation forms associated to arbitrary modules over the preprojective algebra. This formula plays an important rôle in our work on the relationship between semicanonical bases, representation theory of preprojective algebras, and Fomin and Zelevinsky's theory of cluster algebras. It was inspired by recent results of Caldero and Keller.
We give a geometric construction of the Verma modules of a symmetric Kac-Moody Lie algebra g in terms of constructible functions on the varieties of nilpotent finite-dimensional modules of the corresponding preprojective algebra Λ.
We use Arkhipov's twisting functors to show that the universal enveloping algebra of a semi-simple complex finite-dimensional Lie algebra surjects onto the space of ad-finite endomorphisms of the simple highest weight module $L(\lambda)$, whose highest weight is associated (in the natural way) with a subset of simple roots and a simple root in this subset. This is a new step towards a complete answer to a classical question of Kostant. We also show how one can use the twisting functors to reprove the classical results related to this question.
Graded versions of the principal series modules of the category $\cO$ of a semisimple complex Lie algebra $\mg$ are defined. Their combinatorial descriptions are given by some Kazhdan–Lusztig polynomials. A graded version of the Duflo–Zhelobenko four-term exact sequence is proved. This gives results about composition factors of quotients of the universal enveloping algebra of $\mg$ by primitive ideals; in particular an upper bound is obtained for the multiplicities of such composition factors. Explicit descriptions are given of principal series modules for Lie algebras of rank $2$. It can be seen that these graded versions of principal series representations are neither rigid nor Koszul modules.
We introduce the notion of Lie algebras with plus-minus pairs as well as regular plus-minus pairs. These notions deal with certain factorizations in universal enveloping algebras. We show that many important Lie algebras have such pairs and we classify, and give a full treatment of, the three dimensional Lie algebras with plus-minus pairs.
We construct the tableaux realization of generalized Verma modules over the Lie algebra $\text{sl(3,}\,\mathbb{C})$. By the same procedure we construct and investigate the structure of a new family of generalized Verma modules over $\text{sl(}n,\,\mathbb{C}\text{)}$.
The universal enveloping algebra, $U(\mathfrak{g})$, of a Lie algebra $\mathfrak{g}$ supports some norms and seminorms that have arisen naturally in the context of heat kernel analysis on Lie groups. These norms and seminorms are investigated here from an algebraic viewpoint. It is shown that the norms corresponding to heat kernels on the associated Lie groups decompose as product norms under the natural isomorphism $U({{\mathfrak{g}}_{1\,}}\oplus \,{{\mathfrak{g}}_{2}})\,\cong \,U({{\mathfrak{g}}_{1}})\,\otimes \,U({{\mathfrak{g}}_{2}})$. The seminorms corresponding to Green's functions are examined at a purely Lie algebra level for $\text{sl(2,}\,\mathbb{C}\text{)}$. It is also shown that the algebraic dual space ${U}'$ is spanned by its finite rank elements if and only if $\mathfrak{g}$ is nilpotent.