We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that a Banach algebra B that is a completion of the universal enveloping algebra of a finite-dimensional complex Lie algebra
$\mathfrak {g}$
satisfies a polynomial identity if and only if the nilpotent radical
$\mathfrak {n}$
of
$\mathfrak {g}$
is associatively nilpotent in B. Furthermore, this holds if and only if a certain polynomial growth condition is satisfied on
$\mathfrak {n}$
.
For complex simple Lie algebras of types B, C, and D, we provide new explicit formulas for the generators of the commutative subalgebra $\mathfrak z(\hat {\mathfrak g})\subset {{\mathcal {U}}}(t^{-1}\mathfrak g[t^{-1}])$ known as the Feigin–Frenkel centre. These formulas make use of the symmetrisation map as well as of some well-chosen symmetric invariants of $\mathfrak g$. There are some general results on the rôle of the symmetrisation map in the explicit description of the Feigin–Frenkel centre. Our method reduces questions about elements of $\mathfrak z(\hat {\mathfrak g})$ to questions on the structure of the symmetric invariants in a type-free way. As an illustration, we deal with type G$_2$ by hand. One of our technical tools is the map ${\sf m}\!\!: {{\mathcal {S}}}^{k}(\mathfrak g)\to \Lambda ^{2}\mathfrak g \otimes {{\mathcal {S}}}^{k-3}(\mathfrak g)$ introduced here. As the results show, a better understanding of this map will lead to a better understanding of $\mathfrak z(\hat {\mathfrak g})$.
We apply the filtered and graded methods developed in earlier works to find (noncommutative) free group algebras in division rings.
If $L$ is a Lie algebra, we denote by $U(L)$ its universal enveloping algebra. P. M. Cohn constructed a division ring $\mathfrak{D}_{L}$ that contains $U(L)$. We denote by $\mathfrak{D}(L)$ the division subring of $\mathfrak{D}_{L}$ generated by $U(L)$.
Let $k$ be a field of characteristic zero, and let $L$ be a nonabelian Lie $k$-algebra. If either $L$ is residually nilpotent or $U(L)$ is an Ore domain, we show that $\mathfrak{D}(L)$ contains (noncommutative) free group algebras. In those same cases, if $L$ is equipped with an involution, we are able to prove that the free group algebra in $\mathfrak{D}(L)$ can be chosen generated by symmetric elements in most cases.
Let $G$ be a nonabelian residually torsion-free nilpotent group, and let $k(G)$ be the division subring of the Malcev–Neumann series ring generated by the group algebra $k[G]$. If $G$ is equipped with an involution, we show that $k(G)$ contains a (noncommutative) free group algebra generated by symmetric elements.
Using Beilinson–Bernstein localisation, we give another proof of Levasseur's theorem on the Krull dimension of the enveloping algebra of a complex semisimple Lie algebra. The proof also extends to the case of affinoid enveloping algebras.
It is shown that a Lie algebra having a nilpotent radical has a fundamental set of invariants consisting of Casimir operators. A different proof is given in the well known special case of an abelian radical. A result relating the number of invariants to the dimension of the Cartan subalgebra is also established.
We study natural $*$-valuations, $*$-places and graded $*$-rings associated with $*$-ordered rings. We prove that the natural $*$-valuation is always quasi-Ore and is even quasi-commutative (i.e., the corresponding graded $*$-ring is commutative), provided the ring contains an imaginary unit. Furthermore, it is proved that the graded $*$-ring is isomorphic to a twisted semigroup algebra. Our results are applied to answer a question of Cimprič regarding $*$-orderability of quantum groups.
The orthogonal projection of the free associative algebra onto the free Lie algebra is afforded by an idempotent in the rational group algebra of the symmetric group ${{S}_{n}}$, in each homogenous degree $n$. We give various characterizations of this Lie idempotent and show that it is uniquely determined by a certain unit in the group algebra of ${{S}_{n-1}}$. The inverse of this unit, or, equivalently, the Gram matrix of the orthogonal projection, is described explicitly. We also show that the Garsia Lie idempotent is not constant on descent classes (in fact, not even on coplactic classes) in ${{S}_{n}}$.
The universal enveloping algebra, $U(\mathfrak{g})$, of a Lie algebra $\mathfrak{g}$ supports some norms and seminorms that have arisen naturally in the context of heat kernel analysis on Lie groups. These norms and seminorms are investigated here from an algebraic viewpoint. It is shown that the norms corresponding to heat kernels on the associated Lie groups decompose as product norms under the natural isomorphism $U({{\mathfrak{g}}_{1\,}}\oplus \,{{\mathfrak{g}}_{2}})\,\cong \,U({{\mathfrak{g}}_{1}})\,\otimes \,U({{\mathfrak{g}}_{2}})$. The seminorms corresponding to Green's functions are examined at a purely Lie algebra level for $\text{sl(2,}\,\mathbb{C}\text{)}$. It is also shown that the algebraic dual space ${U}'$ is spanned by its finite rank elements if and only if $\mathfrak{g}$ is nilpotent.
Let L be a restricted Lie algebra over a field of characteristic p. Denote by u(L) its restricted enveloping algebra and by ωu(L) the augmentation ideal of u(L). We give an explicit description for the dimension subalgebras of L, namely those ideals of L defined by Dn(L) - L∩ωu(L)n for each n ≥ 1. Using this expression we describe the nilpotence index of ωU(L). We also give a precise characterisation of those L for which ωu(L) is a residually nilpotent ideal. In this case we show that the minimal number of elements required to generate an arbitrary ideal of u(L) is finitely bounded if and only if L contains a 1-generated restricted subalgebra of finite codimension. Subsequently we examine certain analogous aspects of the Lie structure of u(L). In particular we characterise L for which u(L) is residually nilpotent when considered as a Lie algebra, and give a formula for the Lie nilpotence index of u(L). This formula is then used to describe the nilpotence class of the group of units of u(L).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.