Let
$R$ be a semiprime ring with center
$Z\left( R \right)$. For
$x,\,y\,\in \,R$, we denote by
$\left[ x,\,y \right]\,=\,xy\,-\,yx$ the commutator of
$x$ and
$y$. If
$\sigma $ is a non-identity automorphism of
$R$ such that
1
$$\left[ \left[ \cdot \cdot \cdot \,\left[ \left[ \sigma \left( {{x}^{n0}} \right),\,{{x}^{n1}} \right],\,{{x}^{n2}} \right],\cdot \cdot \cdot \right],\,{{x}^{nk}} \right]\,=\,0$$
for all
$x\,\in \,R$, where
${{n}_{0}},\,{{n}_{1}},\,{{n}_{2}},\,...,\,{{n}_{k}}$ are fixed positive integers, then there exists a map
$\mu \,:\,R\,\to \,Z\left( R \right)$ such that
$\sigma \left( x \right)\,=\,x\,+\,\mu \left( x \right)$ for all
$x\,\in \,R$. In particular, when
$R$ is a prime ring,
$R$ is commutative.