We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the geometric Satake equivalence for étale metaplectic covers of reductive group schemes and extend the Langlands parametrization of V. Lafforgue to genuine cusp forms defined on their associated covering groups.
In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to $\mathrm{Bir}(\mathbb{P}^2)$. We prove that if the Galois group has order at most $3$, it always extends to a subgroup of the Jonquières group associated with the point $P$. Conversely, with a degree of at least $4$, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to $P$. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.
We prove an analogue of Belyi’s theorem in characteristic two. Our proof consists of the following three steps. We first introduce a new notion called pseudo-tameness for morphisms between curves over an algebraically closed field of characteristic two. Secondly, we prove the existence of a ‘pseudo-tame’ rational function by showing the vanishing of an obstruction class. Finally, we construct a tamely ramified rational function from the ‘pseudo-tame’ rational function.
We investigate the density of square-free values of polynomials with large coefficients over the rational function field 𝔽q[t]. Some interesting questions answered as special cases of our results include the density of square-free polynomials in short intervals, and an asymptotic for the number of representations of a large polynomial N as a sum of a k-th power of a small polynomial and a square-free polynomial.
We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.
In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.
One can easily show that any meromorphic function on a complex closed Riemann surface can be represented as a composition of a birational map of this surface to $\mathbb{C}{{\mathbb{P}}^{2}}$ and a projection of the image curve froman appropriate point $p\in \mathbb{C}{{\mathbb{P}}^{2}}$ to the pencil of lines through $p$. We introduce a natural stratification of Hurwitz spaces according to the minimal degree of a plane curve such that a given meromorphic function can be represented in the above way and calculate the dimensions of these strata. We observe that they are closely related to a family of Severi varieties studied earlier by J. Harris, Z. Ran, and I. Tyomkin.
We give an explicit treatment of cubic function fields of characteristic at least five. This includes an efficient technique for converting such a field into standard form, formulae for the field discriminant and the genus, simple necessary and sufficient criteria for non-singularity of the defining curve, and a characterization of all triangular integral bases. Our main result is a description of the signature of any rational place in a cubic extension that involves only the defining curve and the order of the base field. All these quantities only require simple polynomial arithmetic as well as a few square-free polynomial factorizations and, in some cases, square and cube root extraction modulo an irreducible polynomial. We also illustrate why and how signature computation plays an important role in computing the class number of the function field. This in turn has applications to the study of zeros of zeta functions of function fields.
We exhibit a strong link between the Hall algebra HX of an elliptic curve X defined over a finite field 𝔽l (or, more precisely, its spherical subalgebra U+X) and Cherednik’s double affine Hecke algebras of type GLn, for all n. This allows us to obtain a geometric construction of the Macdonald polynomials Pλ(q,t−1) in terms of certain functions (Eisenstein series) on the moduli space of semistable vector bundles on the elliptic curve X.
Let E/k be a function field over an infinite field of constants. Assume that E/k(x) is a separable extension of degree greater than one such that there exists a place of degree one of k(x) ramified in E. Let K/k be a function field. We prove that there exist infinitely many nonisomorphic separable extensions L/K such that [L:K]=[E:k(x)] and AutkL=AutKL≅Autk(x)E.
In his celebrated memoir, Morgan Ward's definition of elliptic divisibility sequences has the remarkable feature that it does not become at all clear until deep into the paper that there exist nontrivial examples of such sequences. Even then, Ward's proof of the coherence of his definition relies on displaying a sequence of values of quotients of Weierstraß $\sigma$-functions. We give a direct proof of coherence and show, rather more generally, that a sequence defined by a so-called Somos relation of width 4 is always also given by three-term Somos relations of all larger widths $5, 6, 7, \ldots.$
Bertini's theorem on variable singular points may fail in characteristic $p$; there are algebraic fibrations that are pathological in the sense that all fibres are non-smooth though the total space admits only a finite number of singular points. We prove that if an algebraic fibration by plane projective quartic curves in characteristic 7 is pathological then, after an eventual cyclic base extension of degree 3, it is, up to birational equivalence, obtained by a base extension from the pencil of quartic curves cut out by the equations $ zx^3 + xy^3 + t yz^3 = 0$.
More generally, we classify pathological fibrations by canonical curves of arithmetic genus $g = \frac{p - 1}{2}$ in the projective space of dimension $\frac{p - 3}{2}$. We prove that the gap sequences of the smooth Weierstrass points of the fibres have the property that a positive integer $\ell$ is a gap if and only if $2g + 1 - \ell$ is a non-gap. In analogy to the Kodaira–Néron classification of special fibres of minimal fibrations by elliptic curves, we construct minimal proper regular models of pathological fibrations, determine the structure of the bad fibres, and study the global geometry of the total spaces.
If $K$ is an algebraic function field of one variable over an algebraically closed field $k$ and $F$ is a finite extension of $K$, then any element $a$ of $K$ can be written as a norm of some $b$ in $F$ by Tsen's theorem. All zeros and poles of $a$ lead to zeros and poles of $b$, but in general additional zeros and poles occur. The paper shows how this number of additional zeros and poles of $b$ can be restricted in terms of the genus of $K$, respectively $F$. If $k$ is the field of all complex numbers, then we use Abel's theorem concerning the existence of meromorphic functions on a compact Riemann surface. From this, the general case of characteristic 0 can be derived by means of principles from model theory, since the theory of algebraically closed fields is model-complete. Some of these results also carry over to the case of characteristic $p>0$ using standard arguments from valuation theory.
Consider a one-dimensional differential algebraic function field K over an algebraically closed ordinary differential field k of characteristic 0. We shall prove the following theorem:
Suppose that the group of all automorphisms of K over k is infinite. Then, K is either a differential elliptic function field over k or K = k(ν) with ν′ = ξ or ν′ = ην, where ξ, η ϵ k.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.