We study the Hilbert functions of fat points in
${{\mathbb{P}}^{1\,}}\times \,{{\mathbb{P}}^{1}}$. If
$Z\,\subseteq \,{{\mathbb{P}}^{1\,}}\times \,{{\mathbb{P}}^{1}}$ is an arbitrary fat point scheme, then it can be shown that for every
$i$ and
$j$ the values of the Hilbert function
${{H}_{Z}}(l,\,j)$ and
${{H}_{Z}}(i,\,l)$ eventually become constant for
$l\,\gg \,0$. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in
${{\mathbb{P}}^{1\,}}\times \,{{\mathbb{P}}^{1}}$. This enables us to compute all but a finite number values of
${{H}_{Z}}$ without using the coordinates of points. We also characterize the
$\text{ACM}$ fat point schemes using our description of the eventual behaviour. In fact, in the case that
$Z\,\subseteq \,{{\mathbb{P}}^{1\,}}\times \,{{\mathbb{P}}^{1}}$ is
$\text{ACM}$, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.