Let
$R$ be an arbitrary ring and let
${{\left( - \right)}^{+}}\,=\,\text{Ho}{{\text{m}}_{\mathbb{Z}}}\left( -,\,{\mathbb{Q}}/{\mathbb{Z}}\; \right)$, where
$\mathbb{Z}$ is the ring of integers and
$\mathbb{Q}$ is the ring of rational numbers. Let
$\mathcal{C}$ be a subcategory of left
$R$-modules and
$\mathcal{D}$ a subcategory of right
$R$-modules such that
${{X}^{+}}\,\in \,\mathcal{D}$ for any
$X\,\in \,\mathcal{C}$ and all modules in
$\mathcal{C}$ are pure injective. Then a homomorphism
$f:\,A\to \,C$ of left
$R$-modules with
$C\,\in \,\mathcal{C}$ is a
$\mathcal{C}$-(pre)envelope of
$A$ provided
${{f}^{+}}:\,{{C}^{+}}\,\to \,{{A}^{+}}$ is a
$\mathcal{D}$-(pre)cover of
${{A}^{+}}$. Some applications of this result are given.