Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-10T07:32:26.538Z Has data issue: false hasContentIssue false

The unity, diversity and conformity of bugs (Hemiptera) through time

Published online by Cambridge University Press:  18 January 2018

Jacek Szwedo*
Affiliation:
Department of Invertebrate Zoology and Parasitology, University of Gdańsk, 59, Wita Stwosza Street, PL80-308 Gdańsk, Poland. Email: jacek.szwedo@biol.ug.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

This paper outlines and discusses the fossil record of the Hemiptera – the fifth most diverse insect order. The diversity of these insects in comparison with the “Big Four” group is given, together with a short history of its classification. Updated information is presented about the fossil record of particular families, with a brief analysis. The main evolutionary traits of the major Hemiptera lineages are briefly described. The influence of biotic interactions with endosymbionts, shaping the evolution of the hemipterans as well as abiotic events and major global changes, is disputed. The innovations and perils of the evolutionary history of the Hemiptera are presented.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

The oldest Hexapoda originated sometime in the Silurian, to take advantage of early land plants. The oldest known fossil hexapods are earliest Devonian from Scotland (Ross et al. Reference Ross, Edgecombe, Legg and Clark2016), but the oldest fossils of pterygote insects come from the mid-Carboniferous; however at these times the group was well differentiated (Grimaldi & Engel Reference Grimaldi and Engel2005), with a number of extinct lineages, and also representatives of the oldest extant pterygote lineages, present (Nel et al. Reference Nel, Roques, Nel, Prokin, Bourgoin, Prokop, Szwedo, Azar, Desutter-Grandcolas, Wappler, Garrouste, Coty, Huang, Engel and Kirejtshuk2013).

The bugs, order Hemiptera Linnaeus, Reference Linnaeus1758, belong to one of the most ancient lineages within the Eumetabola (Paraneoptera+Holometabola), and can be dated back to 330 Ma (Nel et al. Reference Nel, Roques, Nel, Prokin, Bourgoin, Prokop, Szwedo, Azar, Desutter-Grandcolas, Wappler, Garrouste, Coty, Huang, Engel and Kirejtshuk2013; Song & Liang Reference Song and Liang2013). The Hemiptera has long been recognised as a monophyletic group (Hennig Reference Hennig1969; Rohdendorf & Rasnitsyn Reference Rohdendorf and Rasnitsyn1980; Ax Reference Ax1999; Beutel et al. Reference Beutel, Friedrich, Ge and Yang2014; Gullan & Cranston Reference Gullan and Cranston2014). The most striking feature of the group is the presence of a segmented rostrum with a multisegmented sheet-like labium covering the mandibular and maxillary stylets; these stylets, being the mandibles and maxillary laciniae, are modified and formed into a concentric bundle, the mandibular enclosing the maxillary ones, both forming the food and salivary channels. The maxillary and labial palpi are always absent (Weber Reference Wang, Szwedo and Zhang1930; Hennig Reference Hennig1969, Reference Hennig1981; Emeljanov Reference Emeljanov2002). Such a unified mouthpart allows the Hemiptera to eat a variety of foods. Feeding habits of the Hemiptera range from phytophagy to predation, including ectoparasitism and hematophagy; many of them are pest species of cultivated crops, vectors of plant pathogens and diseases and some are vectors of human diseases (Grimaldi & Engel Reference Grimaldi and Engel2005; Forero Reference Forero2008; Beutel et al. Reference Beutel, Friedrich, Ge and Yang2014; Gullan & Cranston Reference Gullan and Cranston2014).

The Hemiptera is an unbelievably diversified and successive group, inhabiting all terrestrial and some marine habitats. Being one of the Big Five insect orders, after Coleoptera, Diptera, Hymenoptera and Lepidoptera (Schuh & Slater Reference Schuh and Slater1995; Grimaldi & Engel Reference Grimaldi and Engel2005; Cameron et al. Reference Cameron, Beckenbach, Dowton and Whiting2006; Gullan & Cranston Reference Gullan and Cranston2014), it is the most diversified group of non-endopterygote insects, with diversity maybe surpassed only by the Diptera (Kristensen Reference Kristensen, Naumann, Carne, Lawrence, Nielsen, Spradbery, Taylor, Whitten and Littlejohn1991).

The Hemiptera contains 302 extant and extinct families known – the biggest number of families among any insects, with approximately 104,000 described extinct and recent species (Beutel et al. Reference Beutel, Friedrich, Ge and Yang2014; EDNA 2015; PaleoBioDB 2017). In comparison, all the other insect orders, excluding the Big Five, cover over 100,000 species (Table 1). It should be pointed out, however, that the species richness of the Hemiptera seems to be underestimated. One of the biggest groups, the Cicadomorpha, has about 33,500 known species, but 90 % of the estimated global diversity of this suborder remains unknown (Hodkinson & Casson Reference Hodkinson and Casson1991; Dietrich & Wallner Reference Dietrich, Wallner, Hoch, Asche, Hömberg and Kessling2002; Dietrich Reference Dietrich2005, Reference Dietrich, Chang, Lee and Shih2013).

Table 1 Diversity of extinct and extant insects. Data compiled from Nicholson et al. Reference Nicholson, Mayhew and Ross2015; EDNA 2015; PaleoBioDB 2017, updated.

1. Systematics and classification

Hemipterans constitute a group with a long and complicated evolutionary and taxonomic history. The history of the Hemiptera classification started with Systema Naturae 1st edition (Linnaeus Reference Linnaeus1735), but the 10th edition (Linnaeus Reference Linnaeus1758) is recognised as valid for zoological nomenclature purposes. Fossil Hemiptera studies started almost in parallel, with a paper by Bloch (Reference Bloch1776). Since its beginning, the classification of the group produced troubles and taxonomic problems. Linnaeus (Reference Linnaeus1758), on page 343 of the 10th edition of Systema Naturae, placed the genera Cicada, Notonecta, Nepa, Cimex, Aphis, Chermes, Coccus and Thrips in the Hemiptera. Such recognition resulted in a paraphyletic group. Thysanoptera, together with ‘Psocodea' (paraphyletic assemblage; see Johnson et al. Reference Johnson, Yoshizawa and Smith2004; Yoshizawa & Johnson Reference Yao, Cai, Xu, Shih, Engel, Zheng, Zhao and Ren2006), are regarded as the closest relatives of Hemiptera (Rasnitsyn & Quicke Reference Rasnitsyn and Quicke2002; Grimaldi & Engel Reference Grimaldi and Engel2005; Beutel et al. Reference Beutel, Friedrich, Ge and Yang2014; Gullan & Cranston Reference Gullan and Cranston2014). Linnaeus (Reference Linnaeus1735, Reference Linnaeus1758) built his opinion on the Hemiptera on the structure of the wings, but he noticed the differentiated structure of the mouthparts, dividing hemipterans into insects with “rostrum inflexum” (true bugs, cicadas and their allies) and insects with “rostrum pectorale” (coccids and some other Sternorrhyncha).

The 19th and the beginning of the 20th Century resulted in prolific works on the classification, divisions and subdivision of various taxonomic units, but also the first studies on relationships (Brożek et al. Reference Brożek, Szwedo, Gaj and Pilarczyk2003). During the 19th Century, several workers on the Recent Hemiptera were also dealing with fossils (Handlirsch Reference Handlirsch1906–1908; Becker-Migdisova Reference Becker-Migdisova and Rodendorf1962b; Metcalf & Wade Reference Metcalf and Wade1966; Szwedo et al. Reference Szwedo, Bourgoin and Lefebvre2004; Heie & Wegierek Reference Heie and Wegierek2011). The next steps in the research on the classification and relationships of the Hemiptera, and within the group, were undertaken in the 1950s and ‘60s; however, most of them regarded the Heteroptera and ‘Homoptera' as independent separate insect orders. At this time, several ‘∼morpha' units were established among both Recent and fossil hemipteran groups (Becker-Migdisova Reference Becker-Migdisova and Rodendorf1962b; Štys & Kerzhner Reference Štys and Kerzhner1975). Major debates on classification started again with ‘molecular revolutions'. As result the ‘Homoptera' disappeared as an independent order and the Heteroptera became one of the suborders within the Hemiptera. The question of monophyly of the ‘Auchenorrhyncha' (i.e. Fulgoromorpha+Cicadomorpha) is still under dispute (Bourgoin & Campbell Reference Bourgoin, Campbell and Holzinger2002; Szwedo Reference Szwedo and Holzinger2002; Forero Reference Forero2008; Cryan & Urban Reference Cryan and Urban2012; Beutel et al. Reference Beutel, Friedrich, Ge and Yang2014). The monophyly of Sternorrhyncha was also questioned and discussed (Börner Reference Börner1904; Schlee Reference Schlee1969a, Reference Schleeb, Reference Schleec; Shcherbakov Reference Shcherbakov2000a, 2005). The accumulation of new data and interpretations resulted in the present state of knowledge, with six suborders within the Hemiptera; i.e., Paleorrhyncha, Sternorrhyncha, Fulgoromorpha, Cicadomorpha, Coleorrhyncha and Heteroptera (Szwedo et al. Reference Szwedo, Bourgoin and Lefebvre2004). The number of Hemiptera families, their content and the relationships within and between higher taxa are still the subject of discussions after 250 years of study.

The list of extant and extinct families and classification of the Hemiptera is given below. The classification is derived from the proposals of Burckhardt & Ouvrard (Reference Burckhardt and Ouvrard2012), Drohojowska (Reference Drohojowska2015), Grazia et al. (Reference Grazia, Shuch and Wheeler2008), Heie & Wegierek (Reference Heie and Wegierek2011), Hodgson (Reference Hodgson2014), Hodgson & Hardy (Reference Hodgson and Hardy2013), Schuch & Slater (Reference Schuh and Slater1995), Schuch et al. (Reference Schuh, Weirauch and Wheeler2009), Sweet (Reference Sweet2006) and Szwedo et al. (Reference Szwedo, Bourgoin and Lefebvre2004). The stratigraphic ranks are given partly after Nicholson et al. Reference Nicholson, Mayhew and Ross2015 and PaleoBioDB (2017), checked, corrected and updated; doubtful data are placed in square brackets; chronostratigraphic units are given using the the International Chronostratigraphic Chart, v. 2017/02 (Cohen et al. Reference Cohen, Finney, Gibbard and Fan2013, updated).

Order Hemiptera Linnaeus, Reference Linnaeus1758

Protoprosbolidae† Laurentiaux, Reference Laurentiaux1952 – Carboniferous (Bashkirian)

Clade Hemelytrata Fallén, Reference Fallén1829

= Euhemiptera Zrzavý, Reference Zherikhin, Rasnitsyn and Quicke1990

Aviorrhynchidae† Nel, Bourgoin, Engel & Szwedo, Reference Nel, Roques, Nel, Prokin, Bourgoin, Prokop, Szwedo, Azar, Desutter-Grandcolas, Wappler, Garrouste, Coty, Huang, Engel and Kirejtshuk2013 (in Nel et al. Reference Nel, Roques, Nel, Prokin, Bourgoin, Prokop, Szwedo, Azar, Desutter-Grandcolas, Wappler, Garrouste, Coty, Huang, Engel and Kirejtshuk2013) – Carboniferous (Moscovian)

Suborder Cicadomorpha Evans, Reference Evans1946

Infraorder Prosbolopsemorpha† infraord. nov.

Remark. This group is proposed to embrace Permian and Triassic forms of specialized Cicadomorpha, with long rostrum, and tegmina with dense branching on membrane, often with dense net of irregular transverse veinlets; claval veins fused reaching margin as a common stem.

Superfamily Prosbolopseoidea† Becker-Migdisova, Reference Becker-Migdisova1946

Prosbolopseidae† Becker-Migdisova, Reference Becker-Migdisova1946; Permian (Kungurian–Capitanian)

Superfamily Pereborioidea† Zalessky, Reference Yoshizawa and Johnson1930

Curvicubitidae† Hong, Reference Hong1984; Triassic (Anisian–Carnian)

Ignotalidae† Riek, Reference Riek1973; Permian (Wuchapingian)–Triassic (Induan)

Pereboriidae† Zalessky, Reference Yao, Cai, Xu, Shih, Engel, Zheng, Zhao and Ren1930; Permian (Artinskian)–Triassic (Ladinian)

Infraorder Prosbolomorpha† Popov, Reference Popov, Rohdendorf and Rasnitsyn1980

Superfamily Dysmorphoptiloidea† Handlirsch, Reference Handlirsch1906

Dysmorphoptilidae† Handlirsch, Reference Handlirsch1906; Permian (Kungurian)-Jurassic (Kimmeridgian)

Eoscarterellidae† Evans, Reference Evans1956; Permian (Changhsingian)–Triassic (Carnian)

Magnacicadiidae† Hong & Chen, Reference Hong and Chen1981; Triassic (Anisian)

Superfamily Palaeontinoidea† Handlirsch, Reference Handlirsch1906

Dunstaniidae† Tillyard, Reference Targioni-Tozetti1916; Permian (Capitanian)–Jurassic (Callovian)

Mesogereonidae† Tillyard, Reference Tillyard1921; Triassic (Carnian)

Palaeontinidae† Handlirsch, Reference Handlirsch1906; Triassic (Carnian)–Cretaceous (Aptian)

Superfamily Prosboloidea† Handlirsch, Reference Handlirsch1906

Prosbolidae† Handlirsch, Reference Handlirsch1906; Permian (Artinskian)–Jurassic (Callovian)

Maguviopseidae† Shcherbakov, Reference Shcherbakov2011; Triassic (Carnian)

Clade Clypeata Qadri, Reference Qadri1967

Superfamily Cercopoidea Westwood, Reference Wegierek1838

Aphrophoridae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; [Cretaceous (Cenomanian)] Eocene (Lutetian)–Holocene

Cercopidae Westwood, Reference Wegierek1838; Eocene (Lutetian)–Holocene

Cercopionidae† Hamilton, Reference Hamilton and Grimaldi1990; Cretaceous (Aptian)

Clastopteridae Dohrn, Reference Dohrn1859; [Eocene (Priabonian)] Miocene (Burdigalian)–Holocene

Epipygidae Hamilton, Reference Hamilton2002; [Eocene (Lutetian)]–Holocene

Procercopidae† Handlirsch, Reference Handlirsch1906 – Jurassic (Hettangian)–Cretaceous (Turonian)

Sinoalidae† Wang & Szwedo, Reference Wang, Szwedo, Zhang and Fang2012 in Wang et al. Reference Wang, Szwedo, Zhang and Fang2012; Jurassic (Callovian–Oxfordian)

Superfamily Cicadoidea Latreille, Reference Latreille1802

Cicadidae Latreille, Reference Latreille1802; Cretacous (Cenomanian)–Holocene

Tettigarctidae Distant, Reference Distant1905; Triassic (Rhaetian)–Holocene

Superfamily Hylicelloidea† Evans, Reference Evans1956

Chiliocyclidae† Evans, Reference Evans1956; Triassic (Carnian)

Hylicellidae† Evans, Reference Evans1956; [Permian (Wuchapingian)] Triassic (Ladinian)–Cretaceous (Aptian)

Mesojabloniidae† Storozhenko, Reference Storozhenko1992; Triassic (Carnian)

Superfamily Cicadelloidea Latreille, Reference Latreille1802 stat. resurr.

(= Jassoidea auct., partim)

Remark. The superfamily was proposed to distinguish several groups from the Cercopoidea (Evans Reference Evans1966). It was not universally accepted, and the superfamily Membracoidea was accepted to comprise leafhoppers (Cicadellidae) and treehoppers (Membracidae and related families). The resurrection of the superfamily is proposed to comprise fossil and Recent representatives of these hyperdiverse insects.

Archijassidae† Becker-Migdisova, Reference Becker-Migdisova1962a; Triassic (Carnian)-Jurassic (Tithonian)

Cicadellidae Latreille, Reference Latreille1802 s. l.; Cretaceous (Aptian)-Holocene

Superfamily Membracoidea Rafinesque, Reference Rafinesque1815 s. str.

Remark. This superfamily is treated in the strict sense, following Hamilton's (Reference Hamilton2012) hypothesis on neotenic origin of this lineage from ancestral forms close to or representing Cicadellidae.

Aetalionidae Spinola, Reference Spinola1850; Miocene (Burdigalian)–Holocene

Melizoderidae Deitz & Dietrich, Reference Deitz and Dietrich1993; Holocene

Membracidae Rafinesque, Reference Rafinesque1815; Miocene (Burdigalian)-Holocene

Ulopidae Le Peletier & Audinet-Serville, Reference Le Peletier de Saint-Fargeau and Audinet-Serville1825; Holocene

Superfamily Myerslopioidea Evans, Reference Evans1957

Myerslopiidae Evans, Reference Evans1957; Cretaceous (Aptian)–Holocene

Suborder Fulgoromorpha Evans, Reference Evans1946

Superfamily Coleoscytoidea† Martynov, Reference Martynov1935

Coleoscytidae† Martynov, Reference Martynov1935; Permian (Roadian)

Superfamily Fulgoroidea Latreille, Reference Latreille1807

Acanaloniidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Holocene

Achilidae Stål, Reference Stål1866; Cretaceous (Aptian)–Holocene

Achilixiidae Muir, Reference Muir1923; Holocene

Caliscelidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Miocene (Burdigalian)–Holocene

Cixiidae Spinola, Reference Spinola1839; Cretaceous (Barremian)–Holocene

Delphacidae Leach, Reference Leach1815; Eocene (Lutetian)–Holocene

Derbidae Spinola, Reference Spinola1839; Eocene (Lutetian)–Holocene

Dictyopharidae Spinola, Reference Spinola1839; Cretaceous (Antonian)–Holocene

Eurybrachidae Stål, Reference Stål1862; Eocene (Lutetian)–Holocene

Flatidae Spinola, Reference Spinola1839; Paleocene (Thanetian)–Holocene

Fulgoridae Latreille, Reference Latreille1807; Eocene (Ypresian)-Holocene

Fulgoridiidae† Handlirsch, Reference Handlirsch1939; Jurassic (Sinemurian-Oxfordian)

Gengidae Fennah, Reference Fennah1949; Holocene

Hypochthonellidae China & Fennah, Reference China and Fennah1952; Holocene

Issidae Spinola, Reference Spinola1839; Eocene (Lutetian)–Holocene

Kinnaridae Muir, Reference Muir1925; Miocene (Burdigalian)–Holocene

Lalacidae† Hamilton, Reference Hamilton and Grimaldi1990; Cretaceous (Barremian–Aptian)

Lophopidae Stål, Reference Stål1866; Paleocene (Thanetian)–Holocene

Meenoplidae Fieber, Reference Fieber1872; Holocene

Mimarachnidae† Shcherbakov, Reference Shcherbakov2007c; Cretaceous (Valanginian–Turonian)

Neazoniidae† Szwedo, Reference Szwedo2007; Cretaceous (Barremian–Albian)

Nogodinidae Melichar, Reference Melichar1898; Paleocene (Danian)–Holocene

Perforissidae† Shcherbakov, Reference Shcherbakov2007b; Cretaceous (Barremian–Santonian)

Qiyangiricaniidae† Szwedo, Wang & Zhang, Reference Szwedo, Wang and Zhang2011; Jurassic (Toarcian–Alenian)

Ricaniidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Paleocene (Danian)–Holocene

Tettigometridae Germar, Reference Germar1821; Holocene

Tropiduchidae Stål, Reference Stål1866; Cretaceous (Turonian)–Holocene

Weiwoboidae† Lin, Szwedo, Huang & Stroiński, Reference Lin, Szwedo, Huang and Stroinski2010; Eocene (Ypresian)

Superfamily Surijokocixioidea† Shcherbakov, Reference Shcherbakov2000b

Surijokocixiidae† Shcherbakov, Reference Shcherbakov2000b; Permian (Wordian)–Triassic (Carnian)

Clade Prosorrhyncha Sorensen, Campbell, Gill & Steffen-Campbell, Reference Sorensen, Campbell, Gill and Steffen–Campbell1995

Infraorder Ingruomorpha† infraord. nov.

Remark. The family Ingruidae appears to be one of the earliest branches of early Hemelytrata, separated in parallel to the Prosbolopseidae (Popov & Shcherbakov Reference Popov and Shcherbakov1991, 1996; Shcherbakov Reference Shcherbakov and Schaefer1996). Ingruidae are believed to be ancestral to Coleorrhyncha: Progonocimicidae, and through the scytinopteromorphan family Paraknightiidae to the Heteroptera.

Ingruidae† Becker-Migdisova, Reference Becker-Migdisova1960; Permian (Kungurian–Capitanian)

Infraorder Scytinopteromorpha† Martins-Neto, Gallego & Melchor, Reference Martins-Neto, Gallego and Melchor2003 stat. nov. [= Scytinopteromorpha Gallego, Martins-Neto & Carmona, 2001, nom. inform.]

Superfamily Scytinopteroidea† Handlirsch, Reference Handlirsch1906

Remark This unit is likely paraphyletic.

Granulidae† Hong, Reference Hong1980; Triassic (Ladinian)

Ipsviciidae† Tillyard, Reference Tillyard1919; [Permian (Roadian)]–Jurassic (Sinemurian) [Cretaceous (Aptian)]

Paraknightiidae† Evans, Reference Evans1950; Permian (Changhsingian)–Triassic (Carnian)

Saaloscytinidae† Brauckmann, Martins-Neto & Gallego, Reference Martins-Neto, Brauckmann, Gallego and Carmona2006 in Martins-Neto et al.; Triassic (Anisian–Carnian)

Scytinopteridae† Handlirsch, Reference Handlirsch1906; Permian (Kungurian)–Cretaceous (Aptian)

Serpentivenidae† Shcherbakov, Reference Shcherbakov1984; Triassic (Carnian)–Cretaceous (Berriasian)

Stenoviciidae† Evans, Reference Evans1956; Permian (Capitanian)–Triassic (Carnian)

Suborder Coleorrhyncha Myers & China, Reference Myers and China1929

Infraorder Progonocimicomorpha† Popov, Reference Popov, Rohdendorf and Rasnitsyn1980

Superfamily Progonocimicoidea† Handlirsch, Reference Handlirsch1906

Progonocimicidae† Handlirsch, Reference Handlirsch1906; Permian (Changhsingian)–Cretaceous (Aptian)

Infraorder Peloridiomorpha Popov, Reference Popov, Rohdendorf and Rasnitsyn1980

Superfamily Peloridioidea Breddin, Reference Breddin and Michaelsen1897

Hoploridiidae† Popov & Shcherbakov, Reference Popov and Shcherbakov1991; Cretaceous (Aptian)

Karabasiidae† Popov, Reference Popov1985; Jurassic (Sinemurian-Tithonian)

Peloridiidae Breddin, Reference Breddin and Michaelsen1897; Holocene

Clade Heteropterodea Zrzavý, Reference Zrzavý and Koteja1992

Suborder Heteroptera Latreille, Reference Latreille1810

Clade Euheteroptera Štys, Reference Štys1985

Infraorder Nepomorpha Popov, Reference Popov1968

Pterocimicidae† Popov, Dolling & Whalley, Reference Popov, Dolling and Whalley1994; Jurassic (Sinemurian)

Superfamily Nepoidea Latreille, Reference Latreille1802

Belostomatidae Leach, Reference Leach1815; Triassic (Carnian)–Holocene

Nepidae Latreille, Reference Latreille1802; Eocene (Priabonian)–Holocene

Superfamily Corixoidea Leach, Reference Leach1815

Corixidae Leach, Reference Leach1815; Triassic (Carnian)–Holocene

Shurabellidae† Popov, Reference Popov1971; [Triassic (Norian)] Jurassic (Hettangian–Oxfordian)

Superfamily Gelastocoroidea Kirkaldy, Reference Kirkaldy1897

Gelastocoridae Kirkaldy, Reference Kirkaldy1897; Cretaceous (Cenomanian)–Holocene

Ochteridae Kirkaldy, Reference Kirkaldy1906; Holocene

Superfamily Naucoroidea Leach, Reference Leach1815

Aphelocheiridae Fieber, Reference Fieber1851; Holocene

Leptaphelocheiridae† Polhemus, Reference Polhemus2000; Jurassic (Callovian)

Naucoridae Leach, Reference Leach1815; Triassic (Carnian)–Holocene

Potamocoridae Hungerford, Reference Hungerford1948; Holocene

Triassocoridae† Tillyard, Reference Tillyard1922; Triassic (Anisian-Norian)

Superfamily Notonectoidea Latreille, Reference Latreille1802

Notonectidae Latreille, Reference Latreille1802; Triassic (Carnian)-Holocene

Superfamily Pleoidea Fieber, Reference Fieber1851

Helotrephidae Esaki & China, Reference Esaki and China1927; Holocene

Mesotrephidae† Popov, Reference Popov1971; Cretaceous (Turonian)

Pleidae Fieber, Reference Fieber1851; Holocene

Scaphocoridae† Popov, Reference Popov1968; Jurassic (Oxfordian)

Clade Neoheteroptera Štys, Reference Štys1985

Infraorder Cimicomorpha Leston, Pendergrast & Southwood, Reference Leston, Pendergrast and Southwood1954

Superfamily Cimicoidea Latreille, Reference Latreille1802

Anthocoridae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Cretaceous (Aptian)-Holocene

Cimicidae Latreille, Reference Latreille1802; [Cretaceous (Cenomanian)]–Holocene

Curaliidae Schuh, Weirauch, Henry & Halbert, Reference Schuh, Weirauch, Henry and Halbert2008; Holocene

Lasiochilidae Carayon, Reference Carayon1972; Holocene

Lyctocoridae Reuter, Reference Reuter1884; Holocene

Plokiophilidae China, Reference China1953; Holocene

Polyctenidae Westwood, Reference Westwood1874; Holocene

Torirostratidae† Yao, Cai, Shih & Engel, Reference Yao, Cai, Rieder and Ren2014 in Yao et al. Reference Yao, Cai, Rieder and Ren2014; Cretaceous (Aptian)

Velocipedidae Bergroth, Reference Bergroth1891; Holocene

Vetanthocoridae† Yao, Cai & Ren, Reference Yao, Cai and Ren2006b; Jurassic (Callovian)–Cretaceous (Aptian)

Superfamily Joppeicoidea Reuter, Reference Reuter1910

Joppeicidae Reuter, Reference Reuter1910; Holocene

Superfamily Miroidea Hahn, Reference Hahn1831

Microphysidae Dohrn, Reference Dohrn1859; Cretaceous (Santonian)–Holocene

Miridae Hahn, Reference Hahn1831; Jurassic (Callovian)–Holocene

Superfamily Nabidoidea Costa, Reference Costa1853

Medocostidae Štys, Reference Štys1967; Holocene

Nabidae Costa, Reference Costa1853; Jurassic (Callovian)-Holocene

Superfamily Reduvioidea Latreille, Reference Latreille1807

Ceresopseidae† Becker-Migdisova, Reference Becker-Migdisova1958; Jurassic (Sinemurian)

Pachynomidae Stål, Reference Stål1873; Holocene

Reduviidae sensu lato Latreille, Reference Latreille1807; Eocene (Lutetian)–Holocene

Superfamily Thaumastocoroidea Kirkaldy, Reference Kirkaldy1908

Thaumastocoridae Kirkaldy, Reference Kirkaldy1908; Cretaceous (Turonian)–Holocene

Superfamily Tingoidea Laporte, Reference Laporte1833

Ebboidae† Perrichot, Nel, Guilbert & Néraudeau, Reference Perrichot, Nel, Guilbert and Neraudeau2006; Cretaceous (Albian–Cenomanian)

Hispanocaderidae† Golub, Popov & Arillo, Reference Golub, Popov and Arillo2012; Cretaceous (Albian)

Ignotingidae† Zhang J., Golub, Popov & Shcherbakov, Reference Zhang, Sun and Zhang2005; Cretaceous (Barremian)

Tingidae Laporte, Reference Laporte1833; Cretaceous (Aptian)–Holocene

Vianaididae Kormilev, Reference Kormilev1955; Holocene

Infraorder Dipsocoromorpha Miyamoto, Reference Miyamoto1961

Superfamily Dipsocoroidea Dohrn, Reference Dohrn1859

Ceratocombidae Fieber, Reference Fieber1860; Eocene (Lutetian)–Holocene

Cuneocoridae† Handlirsch, Reference Handlirsch and Schröder1920; Jurassic (Toarcian)

Dipsocoridae Dohrn, Reference Dohrn1859; Cretaceous (Barremian)–Holocene

Hypsipterygidae Drake, Reference Drake1961; Eocene (Lutetian)–Holocene

Schizopteridae Reuter, Reference Reuter1891; Cretaceous (Barremian)–Holocene

Superfamily Stemmocryptoidea Štys, Reference Štys1983

Stemmocryptidae Štys, Reference Štys1983; Holocene

Superfamily Enicocephalomorpha Stichel, Reference Stichel1955

Aenictopecheidae Usinger, Reference Uhler1932; Holocene

Enicocephalidae Stål, Reference Stål1858; Cretaceous (Barremian)–Holocene

Infraorder Gerromorpha Popov, Reference Popov1971

Superfamily Gerroidea Leach, Reference Leach1815

Gerridae Leach, Reference Leach1815; Cretaceous (Albian)–Holocene

Hermatobatidae Coutière & Martin, Reference Coutière and Martin1901; Holocene

Superfamily Hebroidea Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843

Hebridae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Miocene (Burdigalian)–Holocene

Superfamily Hydrometroidea Billberg, Reference Billberg1820

Hydrometridae Billberg, Reference Billberg1820; Cretaceous (Albian)–Holocene

Macroveliidae McKinstry, Reference McKinstry1942; Holocene

Superfamily Mesovelioidea Douglas & Scott, Reference Douglas and Scott1867

Madeoveliidae Poisson, Reference Poisson1959; Holocene

Mesoveliidae Douglas & Scott, Reference Douglas and Scott1867; Jurassic (Kimmeridgian)–Holocene

Paraphrynoveliidae Andersen, Reference Andersen1978; Holocene

Veliidae Brullé, Reference Brullé1836; [Cretaceous (Aptian)] Eocene (Lutetian)–Holocene

Clade Panheteroptera Štys, Reference Štys1985

Infraorder Aradimorpha Verhoeff, Reference Vea and Grimaldi1893

Superfamily Aradoidea Brullé, Reference Brullé1836

Aradidae Brullé, Reference Brullé1836; Jurassic (Oxfordian)–Holocene

Kobdocoridae† Popov, Reference Popov1986; Cretaceous (Hauterivian)

Termitaphididae Myers, Reference Myers1924; Miocene (Burdigalian)–Holocene

Infraorder Leptopodomorpha Štys & Kerzhner, Reference Štys and Kerzhner1975

Superfamily Leptopodoidea Brullé, Reference Brullé1836

Leotichiidae China, Reference China1933; Holocene

Leptaphelocheiridae† Polhemus, 217; Jurassic (Callovian)

Leptopodidae Brullé, Reference Brullé1836; Cretaceous (Cenomanian)–Holocene

Omaniidae Cobben, Reference Cobben1970; Holocene

Palaeoleptidae† Poinar & Buckley, Reference Poinar2009; Cretaceous (Cenomanian)

Superfamily Saldoidea Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843

Aepophilidae Puton, Reference Puton1879; Holocene

Archegocimicidae† Handlirsch, Reference Handlirsch1906; Jurassic (Sinemurian)–Cretaceous (Aptian)

Saldidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Cretaceous (Barremian)–Holocene

Infraorder Pentatomomorpha Leston, Pendergrast & Southwood, Reference Leston, Pendergrast and Southwood1954

Dehiscensicoridae† Du, Yao, Ren & Zhang, Reference Du, Yao, Ren. and Zhang2017; Lower Cretaceous (Barremian–Aptian)

Superfamily Coreoidea Leach, Reference Leach1815

Alydidae Stål, Reference Stål1872; Jurassic (Oxfordian)–Holocene

Coreidae Leach, Reference Leach1815; [Triassic (Norian)] Jurassic (Callovian)–Holocene

Hyocephalidae Bergroth, Reference Bergroth1906; Holocene

Rhopalidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Jurassic (Callovian)–Holocene

Stenocephalidae Latreille, Reference Latreille1825; Holocene

Trisegmentatidae† Zhang, Sun & Zhang, Reference Zhang, Zhang, Hou and Ma1994; Miocene (Langhian)

Yuripopovinidae† Azar, Nel, Engel, Garrouste & Matocq, Reference Azar, Nel, Engel, Garrouste and Matocque2011; Cretaceous (Barremian)

Superfamily Idiostoloidea Scudder, Reference Scudder1962

Idiostolidae Scudder, Reference Scudder1962; Holocene

Superfamily Lygaeoidea Schilling, Reference Schilling1829

Berytidae Fieber, Reference Fieber1851; Eocene (Lutetian)–Holocene

Colobathristidae Stål, Reference Stål1865; Holocene

Lygaeidae Schilling, Reference Schilling1829; [Jurassic (Bajocian)] Eocene (Lutetian)-Holocene

Malcidae Stål, Reference Stål1865; Holocene

Meschiidae Malipatil, Reference Malipatil2014; Holocene

Pachymeridiidae† Handlirsch, Reference Handlirsch1906; [Triassic (Rhaetian)] Jurassic (Hettangian)–Cretaceous (Aptian)

Superfamily Piesmatoidea Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843

Piesmatidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Cretaceous (Aptian)–Holocene

Superfamily Pyrrhocoroidea Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843

Largidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Cretaceous (Santonian)–Holocene

Pyrrhocoridae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Eocene (Priabonian)–Holocene

Superfamily Pentatomoidea Leach, Reference Leach1815

Acanthosomatidae Stål, Reference Stål1864; Eocene (Lutetian)–Holocene

Aphylidae Bergroth, Reference Bergroth1906; Holocene

Canopidae McAtee & Malloch, Reference McAtee and Malloch1928; Holocene

Corimelaenidae Uhler, Reference Tullgren1871 (including Thyreocoridae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843); Holocene

Cydnidae Billberg, Reference Billberg1820; [Jurassic (Toarcian)] (Cretaceous (Hauterivian)–Holocene

Cyrtocoridae Distant, Reference Distant1880; Holocene

Dinidoridae Stål, Reference Stål1867; Holocene

Lestoniidae China, Reference China1955; Holocene

Megarididae McAtee & Malloch, Reference McAtee and Malloch1928; Holocene

Mesopentacoridae† Popov, Reference Popov1968; Jurassic (Toarcian)-Cretaceous (Aptian)

Parastrachiidae Oshanin, Reference Oshanin1922; Holocene

Pentatomidae Leach, Reference Leach1815; Cretaceous (Aptian)-Holocene

Phloeidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Holocene

Plataspididae Dallas, Reference Dallas1851; Holocene

Primipentatomidae† Yao, Cai, Rider & Ren, Reference Yao, Ren, Rider and Cai2013; Cretaceous (Barremian–Aptian)

Probascanionidae† Handlirsch, Reference Handlirsch1939; Jurassic (Toarcian)

Protocoridae† Handlirsch, Reference Handlirsch1906; Jurassic (Hettangian–Toarcian)

Saileriolidae China & Slater, Reference China and Slater1956; Holocene

Scutelleridae Leach, Reference Leach1815; [Eocene (Ypresian)]–Holocene

Tessaratomidae Stål, Reference Shcherbakov, Popov, Rasnitsyn and Quicke1864; Miocene (Burdigalian)–Holocene

Thaumastellidae Seidenstücker, Reference Seidenstücker1960; Cretaceous (Barremian)–Holocene

Urostylididae Dallas, Reference Dallas1851; Miocene (Burdigalian)–Holocene

Venicoridae† Yao, Ren & Cai, Reference Yao, Cai and Ren2012 in Yao et al. Reference Yao, Cai and Ren2012; Cretaceous (Barremian–Aptian)

Suborder Paleorrhyncha† Carpenter, Reference Carpenter1931

Superfamily Archescytinoidea† Tillyard, Reference Tillyard1926

Archescytinidae† Tillyard, Reference Tillyard1926; Carboniferous (Gzhelian)–Triassic (Induan)

Suborder Sternorrhyncha Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843

Archiconiopterygidae† Ansorge, Reference Ansorge1996; Jurassic (Toarcian)

Clade Aphidiformes sensu Schlee, Reference Schlee1969a (= Aphidococca sensu Kluge, Reference Kluge2010)

Infraorder Aphidomorpha Becker-Migdisova & Aizenberg, Reference Becker-Migdisova1962

Superfamily Adelgoidea Schouteden, Reference Schouteden1909

Adelgidae Schouteden, Reference Schouteden1909; [Cretaceous (Albian)] Eocene (Lutetian)–Holocene

Elektraphididae† Steffan, Reference Steffan1968; Cretaceous (Santonian)–Pliocene (Piazencian)

Mesozoicaphididae† Heie in Heie & Pike, 1992; Cretaceous (Campanian)

Superfamily Aphidoidea Latreille, Reference Latreille1802

Aiceonidae Raychaudhuri, Pal & Ghosh, Reference Raychaudhuri, Pal, Ghosh and Raychaudhuri1980; Holocene

Anoeciidae Tullgren, Reference Toenschoff, Gruber and Horn1909; Holocene

Aphididae Latreille, Reference Latreille1802; Cretaceous (Santonian)–Holocene

Baltichaitophoridae† Heie, Reference Heie1980; Eocene (Lutetian–Priabonian)

Canadaphididae† Richards, Reference Richards1966; Cretaceous (Barremian–Campanian)

Cretamyzidae† Heie & Pike, Reference Heie and Pike1992; Cretaceous (Campanian)

Drepanochaitophoridae† Zhang & Hong, Reference Zalessky1999; Eocene (Ypresian)

Drepanosiphidae Herrich-Schäffer, Reference Herrich-Schäffer and Koch1857; Cretaceous (Aptian)–Holocene

Eriosomatidae Kirkaldy, Reference Kirkaldy1905; Eocene (Lutetian)–Holocene

Greenideidae Baker, Reference Baker1920; Eocene (Lutetian)–Holocene

Hormaphididae Mordvilko, Reference Mordvilko1908; Eocene (Lutetian)–Holocene

Isolitaphidae Poinar, Reference Poinar2017; Cretaceous (Cenomanian)

Lachnidae Herrich-Schäffer, Reference Herrich-Schäffer and Koch1857; Miocene (Serravalian)–Holocene

Oviparosiphidae† Shaposhnikov, Reference Shaposhnikov1979; Jurassic (Toarcian)–Cretaceous (Aptian)

Parvaverrucosidae† Poinar & Brown, Reference Poinar and Brown2006; Cretaceous (Cenomanian)

Phloeomyzidae Mordvilko, Reference Mordvilko1934; [Eocene (Lutetian)]–Holocene

Rasnitsynaphididae† Homan & Wegierek, Reference Homan and Wegierek2011; Cretaceous (Aptian)

Sinaphididae† Zhang, Zhang, Hou & Ma, Reference Zhang and Hong1989; Cretaceous (Aptian)

Tamaliidae Oestlund, Reference Oestlund1922; Holocene

Thelaxidae Baker, Reference Baker1920; Cretaceous (Barremian)–Holocene

Superfamily Genaphidoidea† Handlirsch, Reference Handlirsch1907

Genaphididae† Handlirsch, Reference Handlirsch1907; Cretaceous (Berriasian)

Superfamily Palaeoaphidoidea† Richards, Reference Richards1966

Juraphididae† Żyła, Blagoderov & Wegierek, Reference Zrzavý2014; Jurassic (Callovian)–Cretaceous (Aptian)

Palaeoaphididae† Richards, Reference Richards1966; Cretaceous (Aptian–Campanian)

Shaposhnikoviidae† Kononova, Reference Kononova1976; Cretaceous (Santonian)

Szelegiewicziidae† Wegierek, Reference Weber1989; Jurassic (Bajocian)–Cretaceous (Aptian)

Superfamily Phylloxeroidea Herrich-Schäffer, Reference Herrich-Schäffer and Koch1857

Phylloxeridae Herrich-Schäffer, Reference Herrich-Schäffer and Koch1857; Eocene (Lutetian)–Holocene

Superfamily Tajmyraphidoidea† Kononova, Reference Kononova1975

Burmitaphididae† Poinar & Brown, Reference Poinar and Brown2005; Cretaceous (Albian–Cenomanian)

Grassyaphididae† Heie in Heie & Azar, Reference Heie and Azar2000; Cretaceous (Campanian)

Khatangaphididae† Heie in Heie & Azar, 5; Cretaceous (Cenomanian-Santonian)

Lebanaphididae† Heie in Heie & Azar, Reference Heie and Azar2000; Cretaceous (Barremian)

Retinaphididae† Heie in Heie & Azar, Reference Heie and Azar2000; Cretaceous (Santonian)

Tajmyraphididae† Kononova, Reference Kononova1975; Cretaceous (Santonian)

Superfamily Triassoaphidoidea† Heie, Reference Heie1999

Creaphididae† Shcherbakov & Wegierek, Reference Shcherbakov and Wegierek1991; Triassic (Carnian)

Triassoaphididae† Heie, Reference Heie1999; Triassic (Carnian)

Leaphididae† Shcherbakov, Reference Shcherbakov2010; Triassic (Anisian)

Lutevanaphididae† Szwedo, Lapeyrie & Nel, Reference Szwedo, Lapeyrie and Nel2015; Permian (Artinskian)

Infraorder Coccidomorpa Heslop-Harrison, Reference Heslop Harrison1952

Clade Archecoccoidea Borchsenius Reference Borchsenius1958

Apticoccidae† Vea & Grimaldi, Reference Van Valen2015; Cretaceous (Barremian)

Arnoldidae† Koteja, Reference Koteja and Azar2008; Eocene (Lutetian–Priabonian)

Burmacoccidae† Koteja, Reference Koteja2004; Cretaceous (Cenomanian)

Callipappidae MacGillivray, Reference MacGillivray1921; Holocene

Coelostomidiidae Morrison, Reference Morrison1927; Holocene

Electrococcidae† Koteja, Reference Koteja and Grimaldi2000b; Cretaceous (Barremian–Campanian)

Grimaldiellidae† Koteja, Reference Koteja and Grimaldi2000b; Cretaceous (Turonian)

Grohnidae† Koteja, Reference Koteja and Azar2008; Eocene (Lutetian-Priabonian)

Hammanococcidae† Koteja & Azar, Reference Koteja and Azar2008; Cretaceous (Barremian)

Jersicoccidae† Koteja, Reference Koteja and Grimaldi2000b; Cretaceous (Turonian)

Kozariidae† Vea & Grimaldi, Reference Van Valen2015; Cretaceous (Cenomanian)

Kukaspididae† Koteja & Poinar, Reference Koteja and Poinar2001; Cretaceous (Albian)

Kuwaniidae MacGillivray, Reference MacGillivray1921; Eocene (Lutetian)–Holocene

Labiococcidae† Koteja, Reference Koteja and Grimaldi2000b; Cretaceous (Turonian)

Lebanococcidae† Koteja & Azar, Reference Koteja and Azar2008; Cretaceous (Barremian)

Lithuanicoccidae† Koteja, Reference Koteja and Azar2008; Eocene (Lutetian–Priabonian)

Marchalinidae Morrison, Reference Morrison1927; Holocene

Margarodidae Cockerell, Reference Cockerell1899; [Cretaceous (Barremian)] Eocene (Ypresian)–Holocene

Matsucoccidae Morrison, Reference Morrison1927; Cretaceous (Valanginian)–Holocene

Monophlebidae Morrison, Reference Morrison1927; Eocene (Lutetian)–Holocene

Ortheziidae Amyot & Audinet-Serville, Reference Amyot and Audinet-Serville1843; Cretaceous (Barremian)–Holocene

Pennygullaniidae† Koteja & Azar, Reference Koteja and Azar2008; Cretaceous (Barremian)

Phenacoleachiidae Cockerell, Reference Cockerell1902; Holocene

Pityococcidae McKenzie, Reference McKenzie1942; Eocene (Lutetian)–Holocene

Putoidae Tang, Reference Tang, Yao and Ren1992; Cretaceous (Barremian)–Holocene

Serafinidae† Koteja, Reference Koteja and Azar2008; Eocene (Lutetian–Priabonian)

Steingeliidae Morrison, Reference Morrison1927; Cretaceous (Barremian)–Holocene

Stigmacoccidae Morrison, Reference Morrison1927; Holocene

Termitococcidae Jakubski, Reference Jakubski1965; Holocene

Weitschatidae† Koteja, Reference Koteja and Azar2008; Cretaceous (Cenomanian)–Eocene (Priabonian)

Xylococcidae Pergande in Hubbard & Pergande, Reference Hubbard and Pergande1898; Cretaceous (Aptian)–Holocene

Clade Neococcoidea Borchsenius Reference Borchsenius1950

Aclerdidae Cockerell, Reference Cockerell1905; Holocene

Albicoccidae† Koteja, Reference Koteja2004; Cretaceous (Cenomanian)

Asterolecaniidae Cockerell, Reference Cockerell1896; Holocene

Beesoniidae Ferris, Reference Ferris1950; Holocene

Calycicoccidae Brain, Reference Brain1918; Holocene

Caryonemidae Richard, Reference Richard1986; Holocene

Cerococcidae Balachowsky, Reference Balachowsky1942; Holocene

Cissococcidae Brain, Reference Brain1918; Holocene

Coccidae Fallén, Reference Fallén1814; Cretaceous (Cenomanian)–Holocene

Conchaspididae Green, Reference Green1896; Holocene

Cryptococcidae Kosztarab, Reference Kosztarab1968; Holocene

Dactylopiidae Signoret, Reference Signoret1875; [Miocene (Aquitanian)]–Holocene

Diaspididae Targioni-Tozzetti, Reference Tang1868; Holocene

Eriococcoidae Cockerell, Reference Cockerell1899; Cretaceous (Turonian)–Holocene

Halimococcidae Brown & McKenzie, Reference Brown and McKenzie1962; Holocene

Hodgsonicoccidae† Vea & Grimaldi, Reference Van Valen2015; Cretaceous (Barremian)–Holocene

Inkaidae† Koteja, Reference Koteja1989; Cretaceous (Santonian)

Kermesidae Signoret, Reference Signoret1875; Eocene (Lutetian)–Holocene

Kerridae Lindinger, Reference Lindinger1937; Holocene

Lecanodiaspididae Targioni-Tozzetti, Reference Targioni-Tozetti1869; Holocene

Micrococcidae Silvestri, Reference Silvestri1939; Holocene

Phoenicococcidae Stickney, Reference Stickney1934; Holocene

Porphyrophoridae Signoret, Reference Signoret1875; Holocene

Pseudococcidae Cockerell, Reference Cockerell1905; Cretaceous (Barremian)–Holocene

Rhizoecidae Williams, Reference Westwood1969; Holocene

Stictococcidae Lindinger, Reference Lindinger1913; Holocene

Tachardiidae Green, Reference Green1896; Holocene

Infraorder Naibiomorpha† infraord. nov.

Remark. This group is placed within Aphidomorpha (e.g., Heie & Wegierek Reference Heie and Wegierek2011) or in Coccidomorpha (e.g., Shcherbakov Reference Shcherbakov2007a). As the classifications and relationships within these infraorders are still debatable, a new taxonomic unit to comprise three extinct families is proposed.

Superfamily Naibioidea† Shcherbakov, Reference Shcherbakov2007a

Dracaphididae† Hong, Zhang, Guo & Heie, Reference Hong, Zhang, Guo and Heie2009; Triassic (Ladinian)

Naibiidae† Shcherbakov, Reference Shcherbakov2007a; Triassic (Carnian)–Eocene (Lutetian)

Sinojuraphididae† Huang & Nel, Reference Huang and Nel2008; Jurassic (Callovian–Oxfordian)

Infraorder Pincombeomorpha† Shcherbakov, Reference Shcherbakov and Koteja1990

Superfamily Pincombeoidea† Tillyard, Reference Tillyard1922

Boreoscytidae† Becker-Migdisova, Reference Becker-Migdisova1949; Permian (Kungurian–Roadian)

Pincombeidae† Tillyard, Reference Tillyard1922; Permian (Changhsingian)–Triassic (Carnian)

Simulaphididae† Shcherbakov, Reference Shcherbakov2007a; Permian (Changhsingian)–[Triassic (Norian)]

Clade Psylliformes sensu Schlee, Reference Schlee1969a (= Psyllaleyroda sensu Kluge, Reference Kluge2010)

Infraorder Aleyrodomorpha Chou, Reference Chou1963

Superfamily Aleyrodoidea Westwood, Reference Westwood1840

Aleyrodidae Westwood, Reference Westwood1840; Jurassic (Oxfordian)-Recent

Infraorder Psyllaeformia Verhoeff, Reference Vea and Grimaldi1893 (= Psyllodea Flor, Reference Flor1861)

Superfamily Protopsyllidioidea† Carpenter, Reference Carpenter1931

Protopsyllidiidae† Carpenter, Reference Carpenter1931; Permian (Kungurian)–Cretaceous (Turonian)

Superfamily Psylloidea Latreille, Reference Latreille1807

Aphalaridae Löw, Reference Löw1879; Eocene (Lutetian)-Holocene

Calophyidae Vondraček, Reference von Dohlen and Moran1957; Holocene

Carsidaridae Crawford, Reference Crawford1911; Eocene (Priabonian)–Holocene

Homotomidae Heslop-Harrison, Reference Heslop-Harrison1958; Holocene

Liadopsyllidae† Martynov, Reference Martynov1927; Jurassic (Toarcian)–Cretaceous (Aptian)

Liviidae Löw, Reference Löw1879; Miocene (Burdigalian)–Holocene

Malmopsyllidae† Becker-Migdisova, Reference Becker-Migdisova1985; Jurassic (Callovian–Oxfordian)

Phacopteronidae Heslop-Harrison, Reference Heslop-Harrison1958; Miocene (Burdigalian)–Holocene

Psyllidae Latreille, Reference Latreille1807; Miocene (Burdigalian)–Holocene

Triozidae Löw, Reference Löw1879; Miocene (Burdigalian)–Holocene

Remarks. The previous comprehensive list containing data on the fossil record of the Hemiptera was presented by Nicholson et al. (Reference Nicholson, Mayhew and Ross2015). However, this list comprises data up to end of 2009, and listed 194 families with a fossil record. Szwedo et al. (Reference Szwedo, Bourgoin and Lefebvre2004) listed 221 families of the Hemiptera, both extinct and extant. Numerous extinct families were described after this date, and some new Recent families were also discovered (Schuh et al. Reference Schuh, Weirauch, Henry and Halbert2008), and others were established as a result of molecular and revisionary works. The list above comprises 302 families, including 142 extinct families and 78 extant families that lack a fossil record. The classification of the Hemiptera is still subject to discussion and the data on families and their fossil record will be subject to change from new discoveries. However, these current figures are a good measure of the evolutionary success of the group.

2. The geological history of Hemiptera

The oldest Hemiptera – Protoprosbolidae and Aviorrhynchidae – appeared in the Carboniferous (Fig. 1). Since then, the evolution of hemipterans was subject to originations and extinctions, ecological shifts and revolutionary changes. The first division of ancient Hemiptera took place in the Carboniferous – the sternorrhynchan lineage which developed various forms of ‘quasiholometaboly' (Shcherbakov Reference Shcherbakov and Schaefer1996) vs. the ‘euhemimetabolic' euhemipteran lineage.

Figure 1 Relationships of major Hemiptera groups, major global changes affecting the evolution of the order and their heritable symbionts. Main symbiotic groups according to Bennett & Moran (Reference Bennett and Moran2015). Times of estimated interrelationships given tentatively. Abbreviations: Betaproteo = beta proteobacterial symbiont(s); Gamma Halomo = gamma halomoproteobacterial symbiont(s); Gamma Entero = gamma enteroproteobacterial symbiont(s); Alphaproteo = alpha proteobacterial symbiont(s); Bacteriodetes = phylum Bacteriodetes symbiont(s); yeast-like = yeast-like symbiont(s).

Plate 1 Diversity of the Hemiptera. (1) A pea aphid Acyrtosiphon pisum (Aphididae) giving birth to live young. Photo: Shipher Wu, National Taiwan University, CC BY-SA 3.0. (2–3) Giant scale insect Drosicha corpulenta (Monophlebiidae): (2) female; (3) male. Photos: Bernard Dupont, CC BY-SA 2.0. (4) Pachypsylla sp. (Aphalaridae). Photo: Bruce Marlin, CC BY-SA 3.0. (5) Whitefly Bemisia tabaci (Aleyrodidae), USDA, public domain. (6) Winged aphid (Aphidoidea) from Baltic amber. Photo: Anders L. Damgaard, CC BY-SA 4.0. (7) A planthopper Pterodictya reticularis (Fulgoridae) with abdominal filaments of ketoester wax. Photo: Geof Gallice, CC BY-SA 2.0. (8) A planthopper (Tropiduchidae). Photo: Bernard Dumont, CC BY-SA 2.0. (9) Annual cicada Tibicen linnei (Cicadellidae). Photo: Bruce Marlin, CC BY-SA 2.5. (10) Green leafhopper Cicadella viridis (Cicadellidae). Photo: gbohne, CC BY-SA 2.0. (11) Cercopis sanguinolenta (Cercopidae), Photo: Hectonichus, CC BY-SA 3.0. (12) Aetalion sp. (Aetalionidae). PyBio.org. (13) Membracid treehopper Heteronotus sp. (Membracidae). Photo: Bernard Dupont, CC BY-SA 2.0. (14) Fossil hylicellid (Hylicellidae: Vietocyclinae), Middle Jurassic Daohugou Biota, Coll. NIGPAS NN4. Photo: J. Szwedo.

Plate 2 Diversity of the Hemiptera. (1) Moss bug Xenophyes rhachilophus (Peloridiidae). Photo: S. E. Thorpe, public domain. (2) Ochterus marginatus (Ochteridae), public domain. (3) Water strider (Gerridae). Photo: Ryan Hodnett, CC BY-SA 4.0. (4) Nepa rubra (Nepidae). Photo: Holger Gröschl, CC BY-SA 2.0. (5) Big-eyed toad bug Gelastocoris oculatus (Gelastocoridae). Photo: Ryan Hodnett, CC BY-SA 4.0. (6) Cryptostemna sp., female (Dipsocoridae). Photo: Michael F. Schönitzer, CC BY-SA 3.0. (7) Female of bed bug Cimex lectularius (Cimicidae), on the fur of one of its hosts, a bat. Photo: Jacopo Werther, CC BY-SA 4.0. (8) Checkerboard ground bug Spilostethus saxatilis (Lygaeidae). Photo: Bernard Dupont, CC BY-SA 2.0. (9) Plant bug Calocoris roseomaculatus (Miridae). Photo: Hectonichus, CC BY-SA 3.0. (10) Assassin bug (Reduviidae), female laying eggs. Photo: Bernard Dupont, CC BY-SA 2.0; (11) Sycamore lace bug Corythucha ciliata (Tingidae), Photo: Jacopo Werther, CC BY-SA 2.0. (12) Flag-footed bug Anisoscelis affinis (Coreidae). Photo: Cheryl Harleston, CC BY-NC-SA 4.0. (13) Shield-backed bug (Scutelleridae). Photo: Bernard Dupont, CC BY-SA 2.0.

The oldest Paleorhycha: Archescytinidae (paraphyletic group) are known since the latest Carboniferous, and this group seems to be ancestral to sternorrhynchan lineages (Fig. 1). Archescytinidae presents various adaptations for living on plants (such as the seed ferns Peltaspermales and the early gymnosperms Cordaitales and Cycadales). The rostrum base of these archaic tiny sap-feeders was placed variably – more anteriorly on the head (auchenorrhynchous position), or shifted posteriad, between the legs (sternorrhynchous position). Another example of disparity of these insects is in their ovipositors – it was protruding caudally, or its long needle-like inner gonapophyses formed a coiled loop under the abdomen in repose (Shcherbakov & Popov Reference Shcherbakov, Popov, Rasnitsyn and Quicke2002). The hypothesis that the ovipositor was used to lay eggs inside plant strobiles, and that nymphs dwelt there until ripe strobile would dehisce (Becker-Migdisova Reference Becker-Migdisova1972), was argued by Emeljanov (Reference Emeljanov2014), who stated that it was certainly used for inserting eggs into plant tissues and not for moving them into deep and narrow axils. The flattened, phloem-feeding nymphs, clinging on to plants, seems to be common among Archescytinidae, Psylliformes and early Aleyrodomorpha, probably also among Pincombeomorpha, early Aphidomorpha and early Coccidomorpha (Shcherbakov Reference Shcherbakov and Schaefer1996; Shcherbakov & Popov Reference Shcherbakov, Popov, Rasnitsyn and Quicke2002; Drohojowska et al. Reference Drohojowska, Szwedo and Azar2013).

The sternorrhynchans of the infraorder Pincombeomorpha, earliest Aphidomorpha and psylliformian Protopsyllidiidae are present among fossils of the Permian. Permian paleorrhynchans – Archescytinidae are diverse at these times, but they disappear from the fossil record at the end of the period. Triassic Pincombeomorpha had become rare, diverse Aphidomorpha appeared and Protopsyllidiidae are present in Gondwanaland.

It can be speculated that Late Triassic–Jurassic Coccidomorpha (alas unknown) were probably associated with gymnosperms and these ancestral forms probably became extinct (Koteja Reference Koteja1985, Reference Koteja and Rosen1990, Reference Koteja2000a, Reference Koteja and Grimaldib, Reference Koteja and Azar2008; Koteja & Azar Reference Koteja and Azar2008). The presumption that these insects, like aphids, were modified, probably due to the diminuation of the body size and probably a more cryptic lifestyle is reasonable. Koteja (Reference Koteja1985) suggested that ancestral coccidomorphans could shift to “hypogeic” habitats, i.e., leaflitter on the forest floor. Rapid climate change in the Jurassic had been documented (Jenkyns Reference Jenkyns2003), and could be one of the factors for the diversification of the lineages leading to modern representatives of the Sternorrhyncha. These early aphids were very probably oviparous, however it could be assumed that parthenogenesis existed from the very beginning (Dixon Reference Dixon1985; Heie Reference Heie, Leather, Watt, Mills and Walters1994), as it occurrs in the Recent representatives Phylloxeroidea, Adelgoidea and Aphidoidea, as well as in coccids and scale insects (Heie Reference Heie, Leather, Watt, Mills and Walters1994; Koteja Reference Koteja and Boczek1996; Gullan & Martin Reference Gullan, Martin, Cardé and Resh2003). It also seems that alternation between parthenogenetic generations and sexuales amongst aphids is probably as old as parthenogenesis itself (Heie Reference Heie, Leather, Watt, Mills and Walters1994). Both groups (aphids and scale insects) evolved and diversified rapidly in the Cretaceous. Several specialised families appeared, but went extinct by the end of the Cretaceous (von Dohlen & Moran Reference Verhoeff2000; Koteja & Azar Reference Koteja and Azar2008; Heie & Wegierek Reference Heie and Wegierek2011; Hodgson & Hardy Reference Hodgson and Hardy2013). The Jurassic Protopsyllidiidae went back to the northern hemisphere, and the earliest Psylloidea (Liadopsyllidae and Malmopsyllidae) and the oldest whiteflies (Aleyrodidae) appeared (Shcherbakov Reference Shcherbakov2000a).

Most of the recent crown-groups of sternorrhynchans appeared and/or diversified in the Cretaceous period. Cretaceous times are rich in various groups of aphids (Heie & Wegierek Reference Heie and Wegierek2011), scale insects (Koteja & Azar Reference Koteja and Azar2008; Hodgson & Hardy Reference Hodgson and Hardy2013) and diverse whiteflies (Drohojowska & Szwedo Reference Drohojowska and Szwedo2015; Szwedo & Drohojowska Reference Tang, Yao and Ren2016); psylloids seem to be uncommon at these times (Grimaldi Reference Grimaldi2003; Ouvrard et al. Reference Ouvrard, Burckhardt, Azar and Grimaldi2010). The mid-Cretaceous biotic reorganisation of the biosphere (Rasnitsyn Reference Rasnitsyn and Ponomarenko1988; Zherikhin Reference Zhang, Golub, Popov and Shcherbakov2002; Krassilov Reference Krassilov2003), with the extinction of numerous gymnosperm hosts and the diversification of angiosperms in the middle to Late Cretaceous, perhaps drove the evolutionary race, with many short-present, endemic forms present in this period. It appears that the great K/P extinction did not strongly affect these insects, and they further diversified and specialised with host-plants during the Cenozoic (Fig. 1).

The beginnings of the Euhemiptera and the first diversification of the lineages within are hidden deep in the Carboniferous (Nel et al. Reference Nel, Roques, Nel, Prokin, Bourgoin, Prokop, Szwedo, Azar, Desutter-Grandcolas, Wappler, Garrouste, Coty, Huang, Engel and Kirejtshuk2013). The two known families, Protoprosbolidae and Aviorrhynchidae, are not placed at suborder level. In the Permian the Cicadomorpha (Fig. 1) are diversified and morphologically disparate in body size (3 mm to over 100 mm) and in the degree of vein polymerisation. The earliest, ancient Prosorrhyncha (Ingruomorpha) are still morphologically very close to cicadomorphans, their descendants, the earliest coleorrhynchan Progonocimicicidae appeared and the bizarre Fulgoromorpha – Coleoscytidae and later, Surijokocixiidae – presenting more general fulgoromorphan morphology, are recorded among fossils (Fig. 1). By the end of the Permian, Paraknightiidae, presumed ancestors of the true bugs (Heteroptera), appeared (Shcherbakov Reference Shcherbakov and Schaefer1996; Shcherbakov & Popov Reference Shcherbakov, Popov, Rasnitsyn and Quicke2002). At this time, all these insects were probably not jumping (they were not ‘hoppers') and were phytophagous, probably phloem-feeding on various gymnosperm plants. During the Triassic, several novelties appeared. The major one was that the true bugs (Heteroptera) appeared (Fig. 1). Their Permian ancestors are hypothesised to feed on helophytes (emergent water plants), with coriaceous tegmina securely fixed on the thorax in repose (which might be capable of subelytral air storage). Shcherbakov (Reference Shcherbakov and Schaefer1996) and Shcherbakov & Popov (Reference Shcherbakov, Popov, Rasnitsyn and Quicke2002) hypothesised that neoteny and structural simplification played a greater role in the heteropteran origin than ‘anagenetic' differentiation. The prognathous head with long oligomerous (reduced in number of segments) antennae, typical of true bugs, appeared in nymphs of the Late Permian Paraknightiidae and, together with the flattening of the body, were possibly carried over to the imago later on. The morphological changes in ancient Heteroptera could be explained through emigration from a three-dimensional habitat (vegetation) to a two-dimensional water surface/floating plant carpets habitat.

The first true bugs are believed to be scavengers and/or passive predators, which used their long ‘probing' rostrum to feed on soil microfauna of the littoral zone or inhabiting floating plant carpets (Shcherbakov & Popov Reference Shcherbakov, Popov, Rasnitsyn and Quicke2002). Then, Heteroptera adopted zoophagy at the earliest stages of their evolution. Triassic Heteroptera were represented exclusively by Nepomorpha. It is hard to say if the ancient euhemiptera used substrate-borne signalling for communication; however, it is very likely (Senter Reference Senter2008). In the Triassic, the first fossil record of stridulatory organs among Dysmorphoptilidae (Evans Reference Evans1961; Lambkin Reference Lambkin2015, 2016) and Ipsviciidae is observed, so the songs of these insects were transmitted in the air for the first time (Shcherbakov & Popov Reference Shcherbakov, Popov, Rasnitsyn and Quicke2002). The Triassic is also a heyday of the Scytinopteromorpha, which are represented by diverse and disparate taxa. The oldest representatives of the only living lineage of Cicadomorpha (Clypeata – Hylicelloidea) appeared for the first time in the fossil record and diversified by the Late Triassic. However, the Cicadomorpha fossils of the Triassic were dominated by extinct taxa: Dysmorphoptiloidea, Pereborioidea and Palaeontinoidea. The Triassic fossil record of Fulgoromorpha is extremely poor, represented only by Surijokocixiidae. The Coleorrhyncha are represented quite well in the various Triassic deposits of the world, by diverse Progonocimicidae.

Hemelytrata diversity and disparity increased considerbly during the Jurassic. The Fulgoromorpha are represented by the diverse family ‘Fulgoridiidae', certainly paraphyletic (Szwedo et al. Reference Szwedo, Bourgoin and Lefebvre2004; Bourgoin & Szwedo Reference Bourgoin and Szwedo2008), and the bizarre Qiyangiricaniidae (Fulgoroidea) (Szwedo et al. Reference Szwedo, Wang and Zhang2011). The Cicadomorpha were highly diverse, represented at these times by relic Dysmorphoptiloidea, highly diverse Palaeontinidae and various and diversified Clypeata: Hylicellidae and the oldest representatives of the superfamilies present in the recent fauna, i.e., Cicadoidea (Tettigarctidae), Cercopoidea (Procercopidae and Sinoalidae) and Cicadelloidea (Archijassidae) (Wang et al. Reference Wang, Szwedo and Zhang2010). The latter family presents the first evidence of ‘leafhopperization'; i.e., successive acquisition of cicadelloid characters (Shcherbakov 2012). Representatives of the Scytinopteromorpha (Ipsviciidae, Scytinopteridae) are still present in the Jurassic fossil record; however, they are rare. True bugs of the Jurassic are diversified (Nepomorpha, Gerromorpha, Dipsocoromorpha, Leptopodomorpha, Pentatomomorpha), and the first groups returning to phytophagy appeared at these times; for example, Rhopalidae, Miridae and Vetanthocoridae (Popov Reference Popov1968; Yao et al. Reference Williams2006a, Reference Yao, Cai and Renb, Reference Yao, Cai and Ren2007; Hou et al. Reference Hou, Yao, Zhang and Ren2012). The Jurassic is also rich in fossil Coleorrhyncha, numerous Progonocimicidae and less common Karabasiidae (Wang et al. Reference Vondráček2009).

The Cretaceous was period of dramatic change – most lineages well represented in the Triassic and Jurassic became extinct by the Mid-Cretaceous (Fig. 1). The Early Cretaceous witnessed the last Ipsviciidae (Scytinopteromorpha), Progonocimicidae and Karabasiidae (Coleorrhyncha) and the last non-Clypeata Cicadomorpha (Paleontinidae (Palaeontinoidea)). However, the Fulgoroidea became abundant and highy diverse and disparate in morphology (many still require formal description), and the oldest records of families present in the Recent fauna (Cixiidae and Achilidae) are known.

The Clypeata seems to begin prolific diversification at these times, with transitional forms between extinct Procercopidae and modern Aphrophoridae, earliest Cicadellidae and Myerslopiidae, and the first singing cicadas – Cicadidae (Hamilton Reference Hamilton and Grimaldi1990, 1992; Shcherbakov Reference Shcherbakov and Schaefer1996; Poinar & Kritsky Reference Poinar and Kritsky2011). The Early Cretaceous and mid-Cretaceous biotic re-organisation of the biosphere were times of prolific diversification of various groups of Heteroptera. Many families of the Recent fauna appeared for the first time, some others, exclusively Cretaceous, appeared and rapidly disappeared (Popov Reference Popov1986; Zhang et al. Reference Zhang, Sun and Zhang2005; Perrichot et al. Reference Perrichot, Nel, Guilbert and Neraudeau2006; Poinar & Buckley Reference Poinar and Buckley2009; Azar et al. 2011; Golub et al. Reference Golub, Popov and Arillo2012; Yao et al. Reference Yao, Cai and Ren2012, Reference Yao, Ren, Rider and Cai2013, Reference Yao, Cai, Rieder and Ren2014). The first blood-feeding Heteroptera appeared at these times (Yao et al. Reference Yao, Cai, Rieder and Ren2014), and phytophagous groups diversified and adapted to new challenges (Tang et al. Reference Takiya, Tran, Dietrich and Moran2015, Reference Tang, Yao and Ren2016).

The Cenozoic record and modern diversity of the Euhemiptera is represented by nearly half of all known families. However, some groups, such as Coleorrhyncha, have low diversity (single family Peloridiidae); whilst others, such as Fulgoromorpha or Heteroptera, are represented by a high number of families. In contrast, Clypeata (Fig. 1) the only survivors of Cicadomorpha, are represented by a few families (grouped in the superfamilies Cicadoidea, Cercopoidea, Cicadelloidea, Myerslopioidea and Membracoidea). Somewhere near the boundary of the Oligocene and Miocene, the Membracoidea s. str. appeared, maybe due to biotic changes, global cooling and drying, and the origin of treehoppers could result from neoteny (Hamilton Reference Hamilton2012).

However, it must be noted, that the family Cicadellidae, with about 40 recognised subfamilies (Dietrich Reference Dietrich2005), and the assumed diversity of 150,000 species (or more) is one of the dominant groups in the modern fauna.

3. Reasons for success and defeat

Evolution may be dominated by biotic factors, as in the Red Queen model (Van Valen Reference Usinger1973), or abiotic factors, as in the Court Jester model (Barnosky Reference Barnosky1999, Reference Barnosky2001), or a mixture of both (Benton Reference Benton2009). The Red Queen hypothesis (Van Valen Reference Usinger1973) was originally used to describe competition between species being the driving factor behind the high diversity of species we see today. Over 40 years later, it is still an attractive and influential (Brockhurst et al. Reference Brockhurst, Chapman, King, Mank, Paterson and Hurst2014). The Court Jester hypothesis (Barnosky Reference Barnosky1999, Reference Barnosky2001) suggests that changes in species may result not due to competition between species, but due to geological or climatic events that act as the driving force behind evolution, and the formation of new species. The two models appear to operate predominantly over different geographic and temporal scales: competition, predation, parasitism and other biotic factors that shape ecosystems locally and over short time-spans. Extrinsic factors, such as climatic and tectonic events, shape larger-scale patterns regionally and globally, and over thousands and millions of years.

Palaeobiological studies suggest that Hemiptera evolution was driven largely by abiotic factors such as climate, landscape, but also biotic factors such as food supply or new niches appeared, which are important factors for lineage formation. The first major abiotic factor influencing the evolutionary direction of the Hemiptera was the Permian/Triassic extinction event (Shcherbakov Reference Shcherbakov2000b). The next Court Jester event, the Mid-Cretaceous biotic re-organisation of the biosphere, resulted in the extinction of many specialised Mesozoic and relic Paleozoic taxa and in the origination of the modern fauna (Fig. 1). These phytophagous groups, which passed the challenge of host plant shift, met one more Court Jester event – the Oligocene–Miocene global cooling and drying, resulting in new, grassy habitats for colonisation (Fig. 1).

Very little attention has been given to biotic factors and interactions which shaped the evolutionary history of the hemipterans. How strong and in which way all the proposed classes of Red Queen dynamics – Fluctuating Red Queen, Escalatory Red Queen and Chase Red Queen (Brockhurst et al. Reference Brockhurst, Chapman, King, Mank, Paterson and Hurst2014) – are driving the moderm hemipterans, and how they could manage in the past, are still open to question.

One more, overlooked, effect must be taken into consideration in any analysis of the evolutionary successes and defeats observed among the Hemiptera and various lineages within the order – the influence of endosymbiotic mutualistic interactions. Contrary to the Red Queen hypothesis, which suggests that fast evolution is favoured in coevolutionary interactions, the Red King effect assumes that slowly evolving species are likely to gain a disproportionate fraction of the surplus generated through mutualism. This occurs because, on an evolutionary timescale, slow evolution effectively ties the hands of a species, allowing it to “commit” to threats and thus “bargain” more effectively with its partner over the course of the coevolutionary process (Bergstrom & Lachmann Reference Bergstrom and Lachmann2003a, Reference Bergstrom, Lachmann and Hammersteinb).

It could be assumed that the symbiotic association of the ancient paleorrhynchans and sternorrhychans with obligate microorganisms took place early in the history of these groups, probably in their Carboniferous ancestors (Fig. 1). Symbiotic Sulcia is present in modern descendants within Fulgoromorpha and Cicadomorpha: Clypeata lineages (Moran et al. Reference Moran, Tran and Gerardo2005), which suggest a very deep and ancient connection, with a common ancestor of these lineages in the Carboniferous. Zherikhin (Reference Zhang, Golub, Popov and Shcherbakov2002) stated that spore and pollen feeding was probably plesiomorphic, and this kind of feeding is observed in Permopsocida – closely related to the Hemiptera paraneopteran insects (Huang et al. Reference Huang, Bechly, Nel, Engel, Prokop, Azar, Cai, van de Kamp, Staniczek, Garrouste, Krogmann, Dos Santos Rolo, Baumbach, Ohlhoff, Shmakov, Bourgoin and Nel2016). This food source is considered to be much richer and more complete (with aminoacids, sugars, lipids) in nutrients than plant sap (phloem and especially xylem), so the transition to feed on phloem, rich in sugars and poor in aminoacids, would have been a challenge, which could be facilitated by associations with symbionts.

The Sternorrhyncha earliest symbiotic associations are difficult to resolve; the earliest Sternorrhyncha are regarded as phloem-feeders, and this connection is universal amongst Recent representatives of the group. In the modern descendants, the gammaproteobacteria of the Halomonadaceae are known as obligatory symbionts of psyllids and whiteflies, whilst among aphids and coccids, various obligatory bacterial endosymbionts (alphaproteobacteria, betaproteobacteria, gammaproteobacteria, Bacteroidetes) are known (Baumann Reference Baumann2005; Bennett & Moran Reference Bennett and Moran2015). It seems that obligatory endosymbiotic associations among Sternorrhyncha were not a single event, or the most ancient (common?) endosymbionts were replaced by others at very early stages of sternorrhynchan lineage separation.

Obligate symbiosis clearly shaped the evolution of the hemipterans, and it is clearly visible among various sternorrhynchan lineages (Toenschoff et al. Reference Tillyard2012; Bennett & Moran Reference Bennett and Moran2015). A variety of facultative endosymbiotic associations with diverse bacteria and yeasts can be found in all lineages of the Sternorrhyncha, (Moran et al. Reference Moran, McCutcheon and Nakabachi2008; Bennett & Moran Reference Bennett and Moran2015). Endosymbiotic relationships with bacteria and yeasts are also present also among euhemipterans (Müller Reference Müller1949, Reference Müller1962; Buchner Reference Buchner1965; Hosokawa et al. Reference Hosokawa, Kikuchi, Nikoh, Shimada and Fukatsu2006; Takiya et al. Reference Szwedo and Drohojowska2006 Bennett et al. Reference Bennett, McCutcheon, MacDonald, Romanovicz and Moran2014; Bennett & Moran Reference Bennett and Moran2015). It is evident that the effects of endosymbiosis on microevolutionary and macroevolutionary scales in evolution of these insects are of high importance (Fig. 1). New partners and new relationships are regularly reported (e.g., Michalik et al. Reference Michalik, Jankowska, Kot, Gołas and Szklarzewicz2015; Szklarzewicz et al. Reference Szklarzewicz, Grzywacz, Szwedo and Michalik2016). The macroevolutionary and ecological consequences of acquisition (and loss) of endosymbionts, and of replacements and compensations with another endosymbiont, are immense.

These interrelationships gave hemipterans the keys to unlocking new ecological niches, particularly those which rely on an unbalanced plant-sap diet, limited in essential amino acids and vitamins. As a result of multiple gains and losses of symbionts, the multiple mosaic of symbiont combinations is to be found in various groups. Both effects, that of the Red Queen and of the Red King, are to be observed among Hemiptera and their endosymbionts. Symbiotic interrelationships, driving both partners (insects and microorganisms), even if it brings perils of falling into an ‘evolutionary rabbit hole' (Bennett & Moran Reference Bennett and Moran2015), result in benefits, and the high ability of such relationships could be one of the responses for the unpredictable effects of the Court Jester effects.

Euhemiptera are believed to be monophyletic, the monophyly of sternorrhynchans is disputable. This is not only from the fossil record and its interpretation, but the different evolutionary strategies, range of adaptations and heterogeneity presented by the Hemiptera. Firstly, global events (climatic, abiotic) influenced the evolution of the hemipterans in different ways. Secondly, the biotic changes, host availabilities, host shifts and adaptations shaped the evolutionary scenarios of the order. Thirdly, long-term interaction with various internal symbionts and external partners, carved a distinct mark on the evolutionary traits of the group.

3. Conclusion

The Hemiptera can be treated as a uniform, monophyletic group, presenting a number of autapomorphies, recognisable in both extinct and Recent forms. However, the very early stages of the Hemiptera evolution remain virtually unknown. Several questions concerning the formation and specialisation of the rostrum remain unanswered. The head capsule structure needs to be reinterpreted. The wing structure, venation pattern and veins homologisation are still to be elaborated. The genital structures and homology of these elements are still disputable. The behaviour and other biological features, such as sound production, chemical communication, wax production and use, need attention. The endosymbiotic interactions and their influence on food adaptations and evolutionary processes are still far from being understood. The mutualistic interactions with external partners is another challenging field of research.

Some of these questions and problems addressed, can be at least partly, be answered by fossils. Uniformity of the Hemiptera in some features, enormous diversity in others, high adaptability to various conditions, and developmental plasticity – these phenomena are recorded in fossils. The evolvability of the Hemiptera and their vast potential for diversification, make studying the group frustrating on the one hand, but fascinating on the other.

4. Acknowledgements

I would like to cordially thank Dr Jun Chen (Linyi University) and an anonymous reviewer for their constructive reviews, and Dr Andrew J. Ross (National Museums of Scotland, Edinburgh) and Mrs Vicki Hammond (Journals & Archive Officer, RSE) for the valuable comments and indications for greatly improving the earlier version of the paper. Special thanks to late Yuri A. Popov (Palaeontological Institute Russian Academy of Sciences, Moscow) and Thierry Bourgoin (Muséum national d'Histoire Naturelle, Paris) for fruitfull discussions and encouragement for work on classification of the Hemiptera.

References

5. References

Amyot, C. J.-B. & Audinet-Serville, J. G. 1843. Deuxième partie. Homoptères. Homoptera Latr. Histoire Naturelle des insectes. Hemiptères 1843: 1676. Paris: Librairie encyclopédique de Roret.Google Scholar
Andersen, N. M. 1978. A new family of semiaquatic bugs for Paraphrynovelia Poisson with a cladistic analysis of relationships (Insecta, Hemiptera, Gerromorpha). Steenstrupia 4, 211–25.Google Scholar
Ansorge, J. 1996. Insekten aus dem oberen Lias von Grimmen (Vorpommern, Norddeutschland). Neue Paläontologische Abhandlungen 2, 1132.Google Scholar
Ax, P. 1999. Das System der Metazoa. II. Ein Lehrbuch der phylogenetischen Systematik. Stuttgart-Jena-New York: Gustav Fischer Verlag. Mainz: Akademie der Wissenschaften und der Literatur.Google Scholar
Azar, D., Nel, A., Engel, M. S., Garrouste, R. & Matocque, A. 2011. A new family of Coreoidea from the Lower Cretaceous Lebanese amber (Hemiptera: Pentatomomorpha). Polish Journal of Entomology 80, 627644.Google Scholar
Baker, A. C. 1920. Generic classification of the hemipterous family Aphididae. Bulletin of the United States Department of Agriculture 826. 93 pp+16 plates.Google Scholar
Balachowsky, A. 1942. Essai sur la classification des cochenilles (Homoptera-Coccoidea). Annales de l'École nationale d'agriculture de Grignon (Serie 3) 3, 3448.Google Scholar
Barnosky, A. D. 1999. Does evolution dance to the Red Queen or the Court Jester? Abstracts of Papers Fifty-Ninth Annual Meeting Society of Vertebrate Paleontology Adams Mark Hotel Denver, Colorado October 20–23, 1999. Journal of Vertebrate Paleontology 19 (Supplement 003), 31A.Google Scholar
Barnosky, A. D. 2001. Distinguishing the effects of The Red Queen and Court Jester on Miocene mammal evolution in the Northern Rocky Mountains. Journal of Vertebrate Paleontology 21, 172–85.Google Scholar
Baumann, P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology 59, 155–89.Google Scholar
Becker-Migdisova, E. E. 1946. Ocherki po sravnitelnoy morfologii sovremennykh i permskikh Homoptera, chast 1. []. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya 1946(6), 741–66.Google Scholar
Becker-Migdisova, E. E. 1949. Novoe permskoe semeïstvo Boreoscytidae i vopros o filogenii predkov Homoptera []. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR 20, 171–82.Google Scholar
Becker-Migdisova, E. E. 1958. Novye iskopaemye ravnokrylye []. Materialy k Osnovam Paleontologii [] 2, 5767.Google Scholar
Becker-Migdisova, E. E. 1960. Novye permskie ravnokrylye evropeïskoï chasti SSSR [.] Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR 76, 1111. [In Russian.]Google Scholar
Becker-Migdisova, E. E. 1962a. Nekotorye novye poluzhestkokrylye i senoedy. []. Palontologicheskiï Zhurnal 1962(1), 89104.Google Scholar
Becker-Migdisova, E. E. 1962b. Nadotryad Rhynchota. Khobotnye. In Rodendorf, B. B. (ed.) Osnovy paleontologii. Chlenistonogie. Trakheïnye i khelitserovye, 9, 161226. Moskva: Akademia Nauk SSSR. 560 pp. [Published in English as: Becker-Migdisova, E. E. 1991. Superorder Rhynchota. Insects with proboscis. In Rohdendorf, B. B. (ed.) Principles of Palaeontology. Arthropoda. Tracheata and Chelicerata. 9, 216–317. Washington, DC: Smithsonian Institution Libraries and The National Science Foundation. xxxi+894 pp.]Google Scholar
Becker-Migdisova, E. E. 1972. Svyaz' filogenii Psyllomorpha s pishchevoï adaptatsieï na rasteniyakh-khozyaevakh [.] In Sessiya, posvyashchennaya stoletiyu so dnya rozhdeniya akademika A.A. Borisyaka []. Moscow: Nauka, 34.Google Scholar
Becker-Migdisova, E. E. 1985. Iskopaemye nasekomye Psillomorfy []. Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR 206, 194.Google Scholar
Becker-Migdisova, E. E. & Aizenberg, E. E. 1962. Infraotryad Aphidomorpha. []. In Rodendorf, B. B. (ed.) Osnovy paleontologii. Chlenistonogie. Trakheïnye i khelitserovye 9, 194–99. Moskva: Akademia Nauk SSSR. 560 pp. [Published in English as: Becker-Migdisova, E. E. & Aizenberg, E. E. 1991. Infraorder Aphidomorpha. In Rohdendorf, B. B. (ed.) Principles of Palaeontology. Arthropoda. Tracheata and Chelicerata 9, 267–74. Washington, DC: Smithsonian Institution Libraries and The National Science Foundation. xxxi+894 pp.]Google Scholar
Bennett, G. M. & Moran, N. A. 2015. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences 112(33), 10169–76.Google Scholar
Bennett, G. M., McCutcheon, J. P., MacDonald, B. R., Romanovicz, D. & Moran, N. A. 2014. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 5(5), e01697–14.Google Scholar
Benton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323(5915), 728–32.Google Scholar
Bergroth, E. 1891. Eine neue Saldiden-Gattung. Wiener entomologisches Zeitung 10(8), 263–67.Google Scholar
Bergroth, E. 1906. Aphylinae und Hyocephalinae, zwei neue Hemipteren-Subfamilien. Zoologischer Anzeiger 29, 644–49.Google Scholar
Bergstrom, C. T. & Lachmann, M. 2003a. The Red King effect: when the slowest runner wins the coevolutionary race. Proceedings of the National Academy of Sciences 100(2), 593–98.Google Scholar
Bergstrom, C. T. & Lachmann, M. 2003b. The Red King effect. Evolutionary rates and the division of surpluses in mutualisms. In Hammerstein, P. (ed.) Genetic and cultural evolution of cooperation, 223–38. Cambridge, Massachusetts: The MIT Press. 499 pp.Google Scholar
Beutel, R. G. Friedrich, F., Ge, S.-Q. & Yang, X.-K. 2014. Insect morphology and phylogeny. A textbook for students of entomology. Berlin-Boston: Walter de Gruyter GmbH. xv+516 pp.Google Scholar
Billberg, G. J. 1820. Enumeratio insectorum in Museo Gust. Joh. Billberg. Stockholm: Gadel. 138 pp.Google Scholar
Bloch, M. E. 1776. Beytrag zur Naturgeschichte des Kopals. Beschäftigungen der Berlinischen Gesellschaft naturforschender Freunde 2, 91196.Google Scholar
Borchsenius, N. S. 1950. Chervetsy i shchitovki SSSR []. Moskva–Leningrad: Akademiya Nauk SSSR, Zoological Institute. 250 pp.Google Scholar
Borchsenius, N. S. 1958. Ob evolyutsii i filogeneticheskikh svyazyakh Coccoidea (Insecta, Homoptera) [On the evolution and phylogenetic interrelations of the Coccoidea]. Zoologicheskiï Zhurnal 37, 765–80.Google Scholar
Börner, C. 1904. Zur Systematik der Hexapoden. Zoologischer Anzeiger 27, 511–33.Google Scholar
Bourgoin, T. & Campbell, B. C. 2002. Inferring a phylogeny for Hemiptera: falling into the ‘autapomorphic trap'. In Holzinger, W. (ed) Zikaden – leafhoppers, planthoppers and cicadas (Insecta: Hemiptera: Auchenorrhyncha). Denisia, 4, zugleich Kataloge des OÖ. Landesmuseums Linz, Neue Folge Nr. 176, 67–82.Google Scholar
Bourgoin, T. & Szwedo, J. 2008. The ‘cixiid-like’ fossil planthopper families. Bulletin of Insectology 61, 107–08.Google Scholar
Brain, C. K. 1918. The Coccidae of South Africa–II. Bulletin of Entomological Research 9, 107–39.Google Scholar
Breddin, G. 1897. Hemipteren. In Michaelsen, W. (ed) Ergebnisse der Hamburger Magalhaensischen Sammelreise 2, Hemiptera, 36 pp.Google Scholar
Brockhurst, M. A., Chapman, T., King, K. C., Mank, J. E., Paterson, S. & Hurst, G. D. D. 2014. Running with the Red Queen: the role of biotic conflicts in evolution. Proceedings of the Royal Society B 281, 20141382.Google Scholar
Brown, S. W. & McKenzie, H. L. 1962. Evolutionary patterns in the armored scale insects and their allies (Homoptera: Coccoidea: Diaspididae, Phoenicococcidae and Asterolecaniidae). Hilgardia 33, 141–70.Google Scholar
Brożek, J., Szwedo, J., Gaj, D. & Pilarczyk, S. 2003. Former and current views on the classification of the bugs (Insecta, Hemiptera). Genus, International Journal of Invertebrate Taxonomy (Supplement), 85110.Google Scholar
Brullé, A. 1836 (1835). Histoire naturelle des insectes, traitant de leur organisation et de leurs en général, et comprenant leur classification et la description des espèces. Orthoptères et Hémiptères. Paris: F.D. Pillot. 415 pp.Google Scholar
Buchner, P. 1965. Endosymbiosis of animals with plant microorganisms. New York: John Wiley. xvii+909 pp.Google Scholar
Burckhardt, D. & Ouvrard, D. 2012. A revised classification of the jumping plant-lice (Hemiptera: Psylloidea). Zootaxa 3509, 134.Google Scholar
Cameron, S. L., Beckenbach, A. T., Dowton, M. & Whiting, M. F. 2006. Evidence from mitochondrial genomics on interordinal relationships in insects. Arthropod Systematics and Phylogeny 64, 27-34.Google Scholar
Carayon, J. 1972. Caractères systématiques et classification des Anthocoridae (Hemipt.). Annales de la Société Entomologique de France (N.S.) 8, 309–49.Google Scholar
Carpenter, F. M. 1931. The Lower Permian Insects of Kansas: Part 4. The Order Hemiptera, and additions to the Paleodictyoptera and Protohymenoptera. American Journal of Science 5(22), 113–30.Google Scholar
China, W. E. 1933. A new family of Hemiptera-Heteroptera with notes on the phylogeny of the suborder. Annals and Magazine of Natural History, Series 12 10, 180–96.Google Scholar
China, W. E. 1953. A new subfamily of Microphysidae (Hemiptera-Heteroptera). Annals and Magazine of Natural History, Series 12 6, 97125.Google Scholar
China, W. E. 1955. A new genus and species representing a new subfamily of Plataspidae, with notes on the Aphylidae (Hemiptera, Heteroptera). Annals and Magazine of Natural History, Series 12 8, 204–10.Google Scholar
China, W. E. & Fennah, R. G. 1952. On a remarkable genus of Fulgoroid Homoptera representing a new family. Annals and Magazine of Natural History, Series 12 5, 189–99.Google Scholar
China, W. E. & Slater, J. A. 1956. A new subfamily of Urostylidae from Borneo. (Hemiptera: Heteroptera). Pacific Science 10, 410–14.Google Scholar
Chou, I. 1963. Some viewpoints about insect taxonomy. Acta Entomologica Sinica 12, 586–96.Google Scholar
Cobben, R. H. 1970. Morphology and taxonomy of intertidal dwarf-bugs (Heteroptera, Omaniidae fam. nov.). Tijdschrift voor Entomologie 113(2), 6190.Google Scholar
Cockerell, T. D. A. 1889. Article VII—First supplement to the check-list of the Coccidae. Bulletin of the Illinois State Laboratory of Natural History 5, 389–98.Google Scholar
Cockerell, T. D. A. 1896. A check-list of the Coccidae. Bulletin of the Illinois State Laboratory of Natural History 4, 318–39.Google Scholar
Cockerell, T. D. A. 1899. Articla VII. First supplement to the check-list of the Coccidae. Bulletin of the Illinois State Laboratory of Natural History 5, 389–98.Google Scholar
Cockerell, T. D. A. 1902. A contribution to the classification of the Coccidae. The Entomologist 35, 232–33, 257–60.Google Scholar
Cockerell, T. D. A. 1905. Tables for identification of Rocky Mountain Coccidae (scale insects and mealybugs). The University of Colorado Studies. General Series A 2, 189203.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. 2013. The ICS International Chronostratigraphic Chart. Episodes 36, 199204.Google Scholar
Costa, A. 1853. Cimicum regni neapolitani. Centuria 1–4. Napoli. 294 pp.Google Scholar
Coutière, H. & Martin, J. 1901. Sur une nouvel Hémiptère halophile, Hermatobates marchei n. gen., n. sp. Bulletin du Muséum National d'Histoire Naturelle 5, 214–26.Google Scholar
Crawford, D. L. 1911. American Psyllidae IV (A Partial Revision of Subfamilies). Pomona College Journal of Entomology 3, 480503.Google Scholar
Cryan, J. R. & Urban, J. M. 2012. Higher-level phylogeny of the insect order Hemiptera: is Auchenorrhyncha really paraphyletic? Systematic Entomology 37, 721.Google Scholar
Dallas, W. S. 1851. List of the specimens of Hemipterous Insects in the collection of the British Museum, 1, 1369.Google Scholar
Deitz, L. L. & Dietrich, C. H. 1993. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). I. Introduction and revised classification with new family-group taxa. Systematic Entomology 18, 287–96.Google Scholar
Dietrich, C. H. 2005. Keys to the families of Cicadomorpha and subfamilies and tribes of Cicadellidae (Hemiptera: Auchenorrhyncha). Florida Entomologist 88, 502–17.Google Scholar
Dietrich, C. H. 2013. Overview of the phylogeny, taxonomy and diversity of the leafhopper (Hemiptera: Auchenorrhyncha: Cicadomorpha: Membracoidea: Cicadellidae) vectors of plant pathogens. In Chang, C.-J., Lee, C.-Y. & Shih, H.-T. (eds) Proceedings of the 2013 International Symposium on Insect Vectors and Insect-Borne Diseases, Special Publication of TARI 173, 4770. Taichung: Council of Agriculture, Taiwan Agricultural Research Institute, Bureau of Animal and Plant Health Inspection and Quarantine. 230 pp.Google Scholar
Dietrich, C. H. & Wallner, A. M. 2002. Diversity and taxonomic composition of Cicadellidae in the Amazonian rainforest canopy (Hemiptera, Cicadomorpha, Membracoidea), p. 18. In Hoch, H., Asche, M., Hömberg, C. & Kessling, P. (eds) 11th International Auchenorrhyncha Congress, 5–9 August 2002. Berlin: Museum für Naturkunde. 116 pp.Google Scholar
Distant, W. L. 1880–1893. Insecta. Rhynchota. Hemiptera-Heteroptera. Biologia Centrali-Americana 1, xx+462 pp.Google Scholar
Distant, W. L. 1905. Rhynchotal notes. XXXV. Annals and Magazine of Natural History, Series 7 16, 265–80.Google Scholar
Dixon, A. F. G. 1985. Aphid Ecology. Glasgow: Blackie and Son. 157 pp.Google Scholar
Dohrn, F. A. 1859. Homoptera. Catalogus Hemipterorum. Herausgegeben von dem entomologischen Vereine zu Stettin 1859, 5693.Google Scholar
Douglas, J. W. & Scott, J. 1867. British Hemiptera: Additions and corrections. Entomologist's Monthly Magazine 4, 4552.Google Scholar
Drake, C. J. 1961. A new subfamily, genus and two new species of Dipsocoridae (Hemiptera). Publicações culturais da Companhia de Diamantes de Angola 52, 7580.Google Scholar
Drohojowska, J. 2015. Thorax morphology and its importance in establishing relationships within Psylloidea (Hemiptera, Sternorrhyncha). Katowice: University of Silesia Press. 171 pp.Google Scholar
Drohojowska, J., Szwedo, J. & Azar, D. 2013. Talaya batraba gen. et sp. nov. – the first nymph of a Protopsyllidiid (Hemiptera: Sternorrhyncha: Psyllomorpha) from the Lower Cretaceous amber of Lebanon. Acta Geologica Sinica [English Edition] 87, 2131.Google Scholar
Drohojowska, J. & Szwedo, J. 2015. Early Cretaceous Aleyrodidae (Hemiptera: Sternorrhyncha) from the Lebanese amber. Cretaceous Research 52, 368–89.Google Scholar
Du, S., Yao, Y. Z., Ren., D. & Zhang, W. T. 2017. Dehiscensicoridae fam. nov. (Insecta: Heteroptera: Pentatomomorpha) from the Upper Mesozoic of Northeast China. Journal of Systematic Palaeontology 15(12), 9911013.Google Scholar
EDNA 2015. The EDNA Fossil Insect Database by Tony Mitchell. http://edna.palass-hosting.org/ Last updated 7 December 2015, accessed 20 January 2017.Google Scholar
Emeljanov, A. F. 2002. Evolyutsionnyï stsenariï formirovaniya khobotka Rhynchota Entomologicheskoe Obozrenie 81(4), 795807. [Published in English as: Emeljanov, A. F. 2002. Evolutionary scenario of the forming of rostrum in the Rhynchota. Entomological Review 82(9), 1197–1206.]Google Scholar
Emeljanov, A. F. 2014. Evolyutsionnaya rol' i sud'ba pervivhnogo yaïtseklada nasekomykh. Entomologicheskoe Obezrenie 93(1), 91130. [Published in English as: Emeljanov, A. F. 2014. The evolutionary role and fate of the primary ovipositor in insects. Entomological Review 94(3), 367–96.]Google Scholar
Esaki, T. & China, W. E. 1927. A new family of Heteroptera. Transactions of the Entomological Society of London 75, 279–95.Google Scholar
Evans, J. W. 1946. A natural classification of leaf-hoppers (Jassoidea, Homoptera) Part 1. External morphology and systematic position. Transactions of the Royal Entomological Society of London 96(3), 4760.Google Scholar
Evans, J. W. 1950. A re-examination of an Upper Permian insect, Paraknightia magnifica Ev. Records of the Australian Museum 22, 246–50.Google Scholar
Evans, J. W. 1956. Palaeozoic and Mesozoic Hemiptera (Insecta). Australian Journal of Zoology 4, 165258.Google Scholar
Evans, J. W. 1957. Los insectos de las Islas Juan Fernandez (Cicadellidae Homoptera). Revista Chilena de Entomologia 5, 365–74.Google Scholar
Evans, J. W. 1961. Some Upper Triassic Hemiptera from Queensland. Memoirs of the Queensland Museum 14, 1323.Google Scholar
Evans, J. W. 1966. The leafhoppers and froghoppers of Australia and New Zealand (Homoptera: Ciadelloidea and Cercopoidea). Australian Museum Memoir 12, 1347.Google Scholar
Fallén, C. F. 1814. Specimen novam Hemiptera disponendi methodum exhibiens. Lundae. 26 pp.Google Scholar
Fallén, C. F. 1829. Hemiptera Sveciae. Cimicides eorumquea familiae affines. Londini Gothorum: Ex Officina Berlingiana. iv+17–188 pp.Google Scholar
Fennah, R. G. 1949. A new genus of Fulgoroidea (Homoptera) from South Africa. Annals and Magazine of Natural History Series 12 2, 111–20.Google Scholar
Ferris, G. F. 1950. Report upon scale insects collected in China (Homoptera: Coccoidea). Part I. (Contribution No. 66). Microentomology 15, 134.Google Scholar
Fieber, F. X. 1851. Genera hydrocoridum secundum ordinem naturalem in familias disposita. Pragae: Ex Caes. Reg. Aulica typographia filiorum A. Haase. 30 pp.Google Scholar
Fieber, F. X. 1860. Die europäischen Hemiptera. Halbflügler (Rhynchota Heteroptera) 1, 1112. Wien: Carl Gerold's Sohn.Google Scholar
Fieber, F. X. 1872. Katalog der europäischen Cicadinen, nach Originalien mit Benützung der neuesten Literatur. Wien: Druk und Verlag von Carl Gerold's Sohn. 19 pp.Google Scholar
Flor, G. 1861. Die Rhynchoten Livlands in systematische Folge beschrieben. Archiv für die Naturkunde Liv-, Ehst- und Kurlands 2, Biologische Naturkunde 4, 438546.Google Scholar
Forero, D. 2008. The systematics of the Hemiptera. Revista Colombiana de Entomología 34, 121.Google Scholar
Gallego, O. F., Martins-Neto, R. G. & Carmona, M. J. 2001. Nuevos registros de artrópodos (Insecta y Conchostraca) en el triásico de la Argentina: comentarios sobre su afinidad con faunas de Laurasia y Gondwana. Universidad Nacional Del Nordeste, Comunicaciones Científicas y Tecnológicas 2003, Resumen B-05, 14.Google Scholar
Germar, E. F. 1821. Bemerkungen über einige Gattungen der Cicadarien. Magazin der Entomologie 4, 1106.Google Scholar
Golub, V. B., Popov, Y. A. & Arillo, A. 2012. Hispanocaderidae n. fam. (Hemiptera: Heteroptera: Tingoidea), one of the oldest lace bugs from the Lower Cretaceous Álava amber (Spain). Zootaxa 3270, 4150.Google Scholar
Grazia, J., Shuch, R. T. & Wheeler, W. C. 2008. Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics 24, 145.Google Scholar
Green, E. E. 1896. The Coccidae of Ceylon. Part I. London: Dulau & Co. xi +103 pp.Google Scholar
Grimaldi, D. A. 2003. First amber fossils of the extinct family Protopsyllidiidae, and their phylogenetic significance among Hemiptera. Insect Systematics and Evolution 34, 329–44.Google Scholar
Grimaldi, D. & Engel, M. S. 2005. Evolution of the Insects. Cambridge & New York: Cambridge University Press. xv+755 pp.Google Scholar
Gullan, P. J. & Cranston, P. S. 2014. The insects: an outline of entomology. Fifth Edition. Malden, Oxford, Carlton: Wiley-Blackwell. xxv+595 pp.Google Scholar
Gullan, P. J. & Martin, J. H. 2003. Sternorrhyncha (psylloids, whiteflies, aphids and scale insects). In Cardé, R. T. & Resh, V. H. (eds) Encyclopedia of Insects, 1079–89. Amsterdam: Academic Press. xxviii+1266 pp.Google Scholar
Hahn, C. W. 1831. Die wanzenartigen Insecten: getreu nach der Natur abgebildet und beschrieben 1. vi+236 pp.Google Scholar
Hamilton, K. G. A. 1990. Homoptera. In Grimaldi, D. A. (ed) Insects from the Santana Formation (Brazil). Bulletin of the American Museum of Natural History 195, 82122.Google Scholar
Hamilton, K. G. A. 1992. Lower Cretaceous Homoptera from the Koonwarra Fossil Bed in Australia, with a new superfamily and synopsis of Mesozoic Homoptera. Annals of the Entomological Society of America 85, 423–30.Google Scholar
Hamilton, K. G. A. 2002. A new family of froghoppers from the American tropics (Hemiptera: Cercopoidea: Epipygidae). Biodiversity 2(3), 1521.Google Scholar
Hamilton, K. G. A. 2012. Are treehoppers neotenous leafhoppers? American Entomologist 58, 224–32.Google Scholar
Handlirsch, A. 1906–1908. Die fossilen Insekten und die Phylogenie der rezenten Formen. Leipzig: Verlag von Wilhelm Engelmann. ix+1430+51 plates (1906: 1–672; 1907: 673–1120; 1908: 1121–1430), 51 taf. (1906: plates 1–36; 1907: plates 37–51).Google Scholar
Handlirsch, A. 1920. Palaeontologie. In Schröder, C. (ed) Handbuch der Entomologie 3, 117208.Google Scholar
Handlirsch, A. 1939. Neue Untersuchungen über die fossilen Insekten, Teil 2. Annalen des Naturhistorischen Museums in Wien 49, 1240.Google Scholar
Heie, O. E. 1980. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. 1. General part. The families Mindaridae, Hormaphididae, Thelaxidae, Anoeciidae and Pemphigidae. Fauna Entomologica Scandinavica 9, 1236.Google Scholar
Heie, O. E. 1994. Aphid ecology in the past and a new view on the evolution of Macrosiphini. In Leather, S. R, Watt, A. D., Mills, N. J. & Walters, K. F. A. (eds) Individuals, populations and patterns in ecology, 409–18. Andover: Intercept. xxii+491 pp.Google Scholar
Heie, O. E. 1999. Aphids of the past (Hemiptera, Sternorrhyncha). Proceedings of the First International Palaeoentomological Conference, Moscow 1998. AMBA/AM/PFICM98/1.99, 4955.Google Scholar
Heie, O. E., & Azar, D. 2000. Two new species of aphids found in Lebanese amber and a revision of the family Tajmyraphididae Kononova, 1975 (Hemiptera: Sternorrhyncha). Annals of the Entomological Society of America 93, 1222–25.Google Scholar
Heie, O. E. & Pike, E. M. 1992. New aphids in Cretaceous amber from Alberta (Insecta, Homoptera). The Canadian Entomologist 124, 1027–53.Google Scholar
Heie, O. E. & Wegierek, P. 2011. A list of fossil aphids (Hemiptera, Sternorrhyncha, Aphidomorpha). Monographs of the Upper Silesian Museum 6, 182.Google Scholar
Hennig, W. 1969. Die Stammesgeschichte der Insekten. Frankfurt am Main: Waldemar Kramer. 436 pp.Google Scholar
Hennig, W. 1981. Insect phylogeny. New York: John Wiley & Sons. xxii+514 pp.Google Scholar
Herrich-Schäffer, G. A. W. 1857. Die Pflanzenläuse Aphiden. Getreu nach dem Leben abgebildet und beschrieben. In Koch, C. L. (ed.). Nürnberg: J. L. Lotzbeck. viii+334 pp.Google Scholar
Heslop Harrison, G. 1952. LXXII. Preliminary notes on the ancestry, family relations, evolution and speciation of the Homopterous Psyllidae. II. Annals and Magazine of Natural History Series 12 5(55), 679–96.Google Scholar
Heslop-Harrison, G. 1958. Subfamily separation in the homopterous Psyllidae-III (a–c). Annals and Magazine of Natural History Series 13 1, 561–79.Google Scholar
Hodgson, C. J. 2014. Phenacoleachia, Steingelia, Pityococcus and Puto – necoccoids or archaeococcoids? An intuitive phylogenetic discussion based on adult male characters. Acta Zoologica Bulgarica, Supplement 6, 4150.Google Scholar
Hodgson, C. J. & Hardy, N. B. 2013. The phylogeny of the superfamily Coccoidea (Hemiptera: Sternorrhycha) based on the morphology of extant and extinct macropterous males. Systematic Entomology 38, 794804.Google Scholar
Hodkinson, I. D. & Casson, D. 1991. A lesser predilection for bugs: Hemiptera (Insecta) diversity in tropical rain forests. Biological Journal of the Linnean Society 43, 101–09.Google Scholar
Homan, A. & Wegierek, P. 2011. A new family of aphids (Hemiptera, Sternorrhyncha) from the Lower Cretaceous of Baissa, Transbaikalia. ZooKeys 130, 167–74.Google Scholar
Hong, Y. C. 1980. Granulidae, a new family of Homoptera from the Middle Triassic of Tongchuan, Shanxi Province. Acta Zootaxonomica Sinica 5, 6370.Google Scholar
Hong, Y. C. 1984. Curvicubitidae fam. nov. (Lepidoptera, Insecta) from Middle Triassic of Shaanxi. Acta Palaeontologica Sinica 23, 782–85.Google Scholar
Hong, Y. C. & Chen, R.Y. 1981. Magnacicadiidae, a new family of Homoptera from the Middle Trassic of Tongchuan, Shaanxi Province. Science Bulletin of China 26(2), 106–08.Google Scholar
Hong, Y. C., Zhang, Z. J., Guo, X. R. & Heie, O. E. 2009. A new species representing the oldest aphid (Hemiptera, Aphidomorpha) from the Middle Triassic of China. Journal of Paleontology 83, 826–31.Google Scholar
Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biology 4(10), e337.Google Scholar
Hou, W.-J., Yao, Y.-Z., Zhang, W.-T. & Ren, D. 2012. The earliest flower bugs (Heteroptera: Cimicomorha: CImicoidea: Vethantocoridae) from the Middle Jurassic of Inner Mongolia, China. European Journal of Entomology 109, 281–88.Google Scholar
Huang, D. Y. & Nel, A. 2008. A new Middle Jurassic aphid family (Insecta: Hemiptera: Sternorrhyncha: Sinojuraphididae fam. nov.) from Inner Mongolia, China. Palaeontology 51, 715–19.Google Scholar
Huang, D. Y., Bechly, G., Nel, P., Engel, M. S., Prokop, J., Azar, D., Cai, C. Y., van de Kamp, T., Staniczek, A. H., Garrouste, R., Krogmann, L., Dos Santos Rolo, T., Baumbach, T., Ohlhoff, R., Shmakov, A. S., Bourgoin, T. & Nel, A. 2016. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Scientific Reports 6, 23004, 1–9.Google Scholar
Hubbard, H. G. & Pergande, T. 1898. A new coccid on birch. Bulletin. U.S. Department of Agriculture, Division of Entomology (n.s.) 18, 1326.Google Scholar
Hungerford, H. G. 1948. The Corixidae of the western hemisphere (Hemiptera). Kansas University Science Bulletin 32, 1827.Google Scholar
Jakubski, A. W. 1965. A critical revision of the families Margarodidae and Termitococcidae (Hemiptera, Coccoidea). London: British Museum (Natural History). x+187 pp.Google Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Philosophical Transactions of the Royal Society A 361(1810), 18851916.Google Scholar
Johnson, K. P., Yoshizawa, K. & Smith, V. S. 2004. Multiple origins of parasitism in lice. Proceedings of the Royal Society of London B 271(1550), 1771–76.Google Scholar
Kirkaldy, G. W. 1897. Synonymic notes on aquatic Rhynchota. The Entomologist 30, 258–60.Google Scholar
Kirkaldy, G. W. 1905. Catalogue of the genera of the hemipterous family Aphidæ, with their typical species, together with a list of the species described as new from 1885 to 1905. The Canadian Entomologist 37, 414–20.Google Scholar
Kirkaldy, G. W. 1906. List of the genera of the pagiopodous Hemiptera-Heteroptera, with their type species, from 1758 to 1904 (and also of the aquatic and semi-aquatic Trochalopoda). Transactions of the American Entomological Society 32, 117–56, 156a, 156b.Google Scholar
Kirkaldy, G. W. 1908. Memoir on a few heteropterous Hemiptera from eastern Australia. Proceedings of the Linnean Society of New South Wales 32, 768–88.Google Scholar
Kluge, N. Y. 2010. Paradoxical molting process in Orthezia urticae and other coccids (Arthroidignatha: Gallinsecta) with notes on systematic position of scale insects. Zoosystematica Rossica 19, 78103.Google Scholar
Kononova, E. L. 1975. Novoe semeïsvo tleï (Homoptera, Aphidinea) iz verkhnego mela Taïmyra. Entomologicheskoe Obozrenie 54(4), 795807. [Published in English as: Kononova, E. L. 1975. A new aphid family from the Upper Cretaceous of the Taymyr. Entomological Review 54(4), 60–68.]Google Scholar
Kononova, E. L. 1976. Pozdnemelovye vymershie semeïstva tleï (Homoptera, Aphidinea). Paleontologicheskiï Zhurnal 3, 117–26. [Published in English as: Kononova, E. L. 1976. Extinct aphid families (Homoptera, Aphidinea) of the Late Cretaceous. Paleontological Journal 10(3), 352–60.]Google Scholar
Kormilev, N. A. 1955. A new myrmecophil family of Hemiptera from the delta of Río Paraná, Argentina. Revista Ecuatoriana de Entomologia y Parasitologia 2, 465–77.Google Scholar
Kosztarab, M. 1968. Cryptococcidae, a new family of the Coccoidea (Homoptera). Virginia Journal of Science 19, 12.Google Scholar
Koteja, J. 1985. Essay on the prehistory of the scale insects (Homoptera, Coccinea). Annales Zoologici 38(15), 461503.Google Scholar
Koteja, J. 1989. Inka minuta gen. et sp. n. (Homoptera, Coccinea) from Upper Cretaceous Taymyrian amber. Annales Zoologici 43(5), 77101.Google Scholar
Koteja, J. 1990. Paleontology. In Rosen, D. (ed.) Armoured scale insects, their biology, natural enemies and control 4A, 149–63. Amsterdam: Elsevier Science Publisher. xvi+384 pp.Google Scholar
Koteja, J. 1996. Jak rozpoznawać czerwce (Homoptera: Coccinea). [.] In Boczek, J. (ed.) Diagnostyka szkodników roślin i ich wrogów naturalnych 2, 139231. Warsaw: SGGW. 385 pp.Google Scholar
Koteja, J. 2000a. Advances in study of fossil coccids. Polish Journal of Entomology 69, 187211.Google Scholar
Koteja, J. 2000b. Scale insects (Homoptera, Coccinea) from Upper Cretaceous New Jersey amber. In Grimaldi, D. (ed) Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey, 147229. Leiden: Backhuys Publishers. viii+498 pp.Google Scholar
Koteja, J. 2004. Scale insects (Hemiptera: Coccinea) from Cretaceous Myanmar (Burmese) amber. Journal of Systematic Palaeontology 2, 109–14.Google Scholar
Koteja, J. 2008. Xylococcidae and related groups (Hemiptera: Coccinea) from Baltic amber. Prace Muzeum Ziemi 49, 1956.Google Scholar
Koteja, J. & Azar, D. 2008. Scale insects from Lower Cretaceous amber of Lebanon (Hemiptera: Sternorrhyncha: Coccinea). Alavesia 2, 133–67.Google Scholar
Koteja, J. & Poinar, G. O. Jr. 2001. A new family, genus, and species of scale insect (Hemiptera: Coccinea: Kukaspididae, new family) from Cretaceous Alaskan amber. Proceedings of the Entomological Society of Washington 103, 356–63.Google Scholar
Krassilov, V. A. 2003. Terrestrial paleoecology and global change. Russian Academic Monographs 1. Sofia–Moscow: Pensoft. xvi + 464 pp.Google Scholar
Kristensen, N. P. 1991. Chapter 5. Phylogeny of extant Hexapods. In Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S., Spradbery, J. P., Taylor, R. W. Whitten, M. J. & Littlejohn, M. J. (eds) Insects of Australia. 2nd edition. CSIRO, Division of Entomology. 2 volumes, 125–40. Ithaca: Cornell University Press. xvi+542 pp.; vi+595 pp.Google Scholar
Lambkin, K. J. 2015. Revision of the Dysmorphoptilidae with emarginate tegmina (Hemiptera: Auchenorryncha: Cicadomorpha: Prosboloidea) of the Queensland Triassic. Zootaxa 3936(3), 357–74.Google Scholar
Lambkin, K. J. 2016. Revision of the Dysmorphoptilidae (Hemiptera: Cicadomorpha: Prosboloidea) of the Queensland Triassic – Part 2. Zootaxa 4092(2), 207–18.Google Scholar
Laporte, F. L. de 1833. Essai d'une classification systematique de 1'ordre de Hémiptères (Hémiptères Heteroptères, Latr.). Guerin Magasin de Zoologie 2, 188, 4 plates.Google Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière des Crustacés et des Insectes. Ouvrage faisant suite à l'Histoire Naturelle, générale particulière, composée par Leclerc de Buffon et rédigé par C.S. Sonnini, membre de plusieurs Sociétés savantes 3, Familles naturelles et genres. Paris: Dufart. i–xii, 13–467 pp.Google Scholar
Latreille, P. A. 1807. Sectio secunda. Familia quarta. Cicadariae. Cicadaires. In Genera crustaceorum et insectorum: secundum ordinem natrualem in familias disposita, iconibus exemplisque plurimis explicata. 3, 1258. Paris: Amand Koenig.Google Scholar
Latreille, P. A. 1810. Considérations générales sur l'orde naturel des animaux composant les classes des Crustacés, des Arachnides, et des Insectes. Avec un tableau méthodique de leurs genres, disposés en familles. Paris: F. Schoell, 444 pp.Google Scholar
Latreille, P. A. 1825. Families naturelles du regne animal. Exposées succintment et dans un ordre analytique avec l'indication de leurs generes. Paris: J. B. Baillière. 570 pp.Google Scholar
Laurentiaux, D. 1952. Découverte d'un Homoptère Prosboloïde dans le Namurien belge. Association pour l'Étude de la Paléontologie et de la Stratigraphie Houillères Publication 14, 116.Google Scholar
Leach, W. E. 1815. Entomology. The Edinburgh Encyclopedia; conducted by David Brewster 9, 57172.Google Scholar
Le Peletier de Saint-Fargeau, A. L. M., Audinet-Serville, J. G. 1825. Ulope, Ulopa and Aethalion, Aethalion. In Encyclopédie méthodique ou par ordre de Matieres; par une Société de gens de lettres, de savans et d'artistes; Precédée d'un Vocabulaire universel, servant de Table pour tout l'Ouvrage, ornée des Portraits de MM. Diderot & d'Alembert, premiers Éditeurs de l'Encyclopédie. Histoire naturelle. Entomologie, ou Histoire naturelle des Crustacés, des Arachnides et des Insectes. Par M. Latreille, Membre De l'institut, Academie Royale des Sciences, etc. Par MM. Latreille, Le Peletier De Saïnt-Fargeau, Serville et Guerin, 10. Paris: Agasse. ii+832 pp.Google Scholar
Leston, D., Pendergrast, J. G. & Southwood, T. R. E. 1954. Classification of terrestrial Heteroptera (Geocorisae). Nature 174(4419), 9192.Google Scholar
Lin, Q.-B., Szwedo, J., Huang, D. & Stroinski, A. 2010. Weiwoboidae fam. nov. of ‘higher' Fulgoroidea (Hemiptera: Fulgoromorpha) from the Eocene deposits of Yunnan, China. Acta Geological Sinica (English Edition) 84(4), 751–55.Google Scholar
Lindinger, L. 1913. Afrikanische Schildläuse V. Die Schildläuse Deutsch-Ostafrikas. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten 30(3), 5995.Google Scholar
Lindinger, L. 1937. Verzeichnis der schildlaus Gattungen. (Homoptera-Coccoidea handlirsch 1903). Entomologisches Jahrbuch 46, 178–98.Google Scholar
Linnaeus, C. 1735. Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera, & species. Lugduni Batavorum: Apud Theodorum Haak, Ex Typographia Joannis Wilhelmi de Groot. 13 pp.Google Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiæ: Laurentii Salvii. [4]+824 pp.Google Scholar
Löw, F. 1879. Zur systematik der Psylloden. Verhandlungen der Zoologischbotanischen Gesellschaft in Wien 28, 586610.Google Scholar
MacGillivray, A. D. 1921. The Coccidae. Tables for the identification of the subfamilies and some of the more important genera and species, together with discussions of their anatomy and life history. Urbana, Illinois: Scarab Company. 502 pp.Google Scholar
Malipatil, M. P. 2014. Meschiidae, a new family of Lygaeoidea (Hemiptera: Heteroptera) from India and Australia, with descriptions of a new genus and two new species. Zootaxa 3815(2), 233–48.Google Scholar
Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. 2003. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta zoologica cracoviensia 46 (suppl. – Fossil Insects), 229–56.Google Scholar
Martins-Neto, R. G., Brauckmann, C., Gallego, O. F. & Carmona, M. J. 2006. The Triassic insect fauna from Argentina – Blattoptera, Glosselytrodea, Miomoptera, Auchenorrhyncha and Coleoptera from the Los Rastros Formation (Bermejo Basin), Los Chañares locality (La Rioja Province). Clausthaler Geowissenschaften 5, 19.Google Scholar
Martynov, A. V. 1927. Jurassic fossil Insect from Turkestan. 6. Homoptera and Psocoptera. Izvestiya Akademii Nauk SSSR 20(13–14) 1926, 1349–66.Google Scholar
Martynov, A. V. 1935. Permian fossil Insects from the Arkhangelsk district. Part 5. Homoptera. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR 4, 135.Google Scholar
McAtee, W. L. & Malloch, J. R. 1928. Synopsis of pentatomid bugs of the subfamilies Megaridinae and Canopinae. Proceedings of the United States National Museum 72(2721), 121.Google Scholar
McKenzie, H. L. 1942. New species of pine-infesting Margarodidae from California and Soputhwestern United States (Homoptera: Coccoidea: Maragarododae). (Contribution No. 30). Microentomology 7, 118.Google Scholar
McKinstry, A. P. 1942. A new family of Hemiptera-Heteroptera proposed for Macrovelia hornii Uhler. Pan-Pacific Entomologist 18, 9096.Google Scholar
Melichar, L. 1898. Monographie der Ricaniiden (Homoptera). Annalen des Kaiserlich – Königlichen Naturhistorischen Hofmuseums Wien 13, 197359.Google Scholar
Metcalf, Z. P. & Wade, V. 1966. A Catalogue of the fossil Homoptera (Homoptera: Auchenorhyncha). General Catalogue of the Homoptera. A supplement to Fascicle I. Paper N° 2049. Raleigh: North Carolina State University. v+245 pp.Google Scholar
Michalik, A., Jankowska, W., Kot, M., Gołas, A. & Szklarzewicz, T. 2015. Symbiosis in green leafhopper, Cicadella viridis (Hemiptera: Cicadellidae). Association in statu nascendi? Arthropod Structure and Development 43, 579–87.Google Scholar
Miyamoto, S. 1961. Comparative morphology of alimentary organs of Heteroptera, with the phylogenetic consideration. Sieboldia 2, 197259.Google Scholar
Moran, N. A., Tran, P. & Gerardo, N. M. 2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology 71, 88028810.Google Scholar
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. 2008. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42, 165–90.Google Scholar
Mordvilko, A. 1908. Tablitsy dla opredeleniya grupp i rodov tleï (sem. Aphididae Pass.). []. Ezhegodnik Zoologicheskogo muzeya Imperatorskoï Akademii Nauk 13, 353–84.Google Scholar
Mordvilko, A. 1934. On the evolution of aphids. Archiv für Naturgeschichte N.F. 3, 160.Google Scholar
Morrison, H. 1927. Descriptions of new genera and species belonging to the coccid family Margarodidae. Proceedings of the Biological Society of Washington 40, 99109.Google Scholar
Muir, F. A. G. 1923. Achilixius, a new genus, constituting a new family of the Fulgoroidea (Homoptera). Philippine Journal of Science, 22, 483–87.Google Scholar
Muir, F. A. G. 1925. On the genera of Cixiidae, Meenoplidae and Kinnaridae. Pan-Pacific Entomologist 1, 156–63.Google Scholar
Müller, H.-J. 1949. Zur Systematik und Phylogenie der Zikaden-Endosymbiosen. Biologisches Zentrablatt 68, 343–68.Google Scholar
Müller, H.-J. 1962. Neuere Vorstellungen über Verbreitung und Phylogenie der Endosymbiosen der Zikaden. Zeitschrift für Morphologie und Ökologie der Tiere 51, 190210.Google Scholar
Myers, J. G. 1924. On the systematic position of the family Termitaphidiæ (Hemiptera, Heteroptera) with a description of a new genus and species from Panama. Psyche 31, 259–78.Google Scholar
Myers, J. G. & China, W. E. 1929. The systematic position of the Peloridiidae as elucidated by a further study of the external anatomy of Hemiodoecus leai China. Annals and Magazine of Natural History Series 10 3, 282–94.Google Scholar
Nel, A., Roques, P., Nel, P., Prokin, A. A., Bourgoin, T., Prokop, J., Szwedo, J., Azar, D., Desutter-Grandcolas, L., Wappler, T., Garrouste, R., Coty, D., Huang, D.-Y., Engel, M. S. & Kirejtshuk, A. G. 2013. The earliest known holometabolous insects. Nature 503(7475), 257–61.Google Scholar
Nicholson, D. B., Mayhew, P. J. & Ross, A. J. 2015. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10(7), e0128554.Google Scholar
Oestlund, O. W. 1922. A synoptical key to the Aphididae of Minesota. Report, State Entomologist of Minnesota to the Governor 19, 114–51.Google Scholar
Oshanin, V. 1922. Sur les genres de la tribu Stracharia Put. (Hemiptera, Pentatomidae). Ezhegodnik Zoologicheskogo museya Akademii Nauk SSSR 23, 143–48.Google Scholar
Ouvrard, D., Burckhardt, D., Azar, D. & Grimaldi, D. 2010. Non-jumping plant-lice in Cretaceous amber (Hemiptera: Sternorrhyncha: Psylloidea). Systematic Entomology 35, 172–80.Google Scholar
PaleoBioDB 2017. The Paleobiology Database. Revealing the history of life. https://paleobiodb.org/ Last accessed 20 January 2017.Google Scholar
Perrichot, V., Nel, A., Guilbert, E. & Neraudeau, D. 2006. Fossil Tingoidea (Heteroptera: Cimicomorpha) from French amber, including Tingidae and a new family, Ebboidae. Zootaxa 1203, 5768.Google Scholar
Poinar, G. Jr. 2017. A new family of aphids (Hemiptera: Aphidoidea) in mid-Cretaceous Myanmar amber. Cretaceous Research 75, 710.Google Scholar
Poinar, G. Jr. & Brown, A. E. 2005. New Aphidoidea (Hemiptera: Sternorrhyncha) in Burmese amber. Proceedings of the Entomological Society of Washington 107, 835–45.Google Scholar
Poinar, G. Jr. & Brown, A. E. 2006. Remarks on Parvaverrucosa annulata (= Verrucosa annulata Poinar and Brown, 2005) (Hemiptera: Sternorrhyncha: Aphidoidea). Proceedings of the Entomological Society of Washington 108, 734–35.Google Scholar
Poinar, G. O. Jr. & Buckley, R. 2009. Palaeoleptus burmanicus n. gen., n. sp. and Early Cretaceous shore bug (Hemiptera: Palaeoleptidae n. fam.) in Burmese amber. Cretaceous Research 30, 1000–04.Google Scholar
Poinar, G. O. Jr. & Kritsky, G. 2011. Morphological conservatism in foreleg structure of cicada hatchlings, Burmacicada protera n. gen., n. sp. in Burmese amber, Dominicicada youngi n. gen. n. sp. in Dominican amber and the extant Magicicada septemdecim (L.) (Hemiptera: Cicadidae). Historical Biology 24, 461–66.Google Scholar
Poisson, R. 1959. Sur un nouveau representant africain de la faune terrestre commensale des biotopes hyropetriques: Madeovelia guineensis nov. gen., n. sp. (Insectes, Hétèropteres). Bulletin de l'Institut français d'Afrique noire (A) 21, 658–63.Google Scholar
Polhemus, J. T. 2000. North American Mesozoic aquatic Heteroptera (Insecta, Naucoroidea, Nepoidea) from the Todilto Formation, New Mexico. New Mexico Museum of Natural History and Science Bulletin 16, 2940.Google Scholar
Popov, Y. A. 1968. Nastoyashchiye poluzhestkokryliye yurskoy fauny Karatau (Heteroptera) []. Yurskoe nasekomye Karatau [], 99–11. Moscow: Nauka.Google Scholar
Popov, Y. A. 1971. Istoricheskoe razvitie poluzhestkokrylykh infraotryada Nepomorpha (Heteroptera) [.] Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR 129, 1–230+9 plates.Google Scholar
Popov, Y. A. 1980. Nadotryad Cimicidea Laicharting, 1781. Otryad Cimicina Laicharting, 1781. Poluzhestorylye, ili khobotnye [] In Rohdendorf, B. B. & Rasnitsyn, A. P. (eds) Istoricheskoe razvitye klassa nasekomykh [], 5869. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 175. 269 pp+8 plates.Google Scholar
Popov, Y. A. 1985. Yurskie klopy i peloridiinovye Yuzhnoï Sibiri i Zapadnoï Mongolii. [.] Trudy Paleontologicheskogo Instituta AN SSSR 211, 2847.Google Scholar
Popov, Y. A. 1986. Peloridiina (= Coleorrhyncha) and Cimicina (= Heteroptera). In Nasekomye v rannemelovykh otlozheniyakh zapadnoï Mongolii []. The Joint Soviet–Mongolian Palaeontological Expedition 28, 5083.Google Scholar
Popov, Y. A. & Shcherbakov, D. E. 1991. Mesozoic Peloridioidea and their ancestors (Insecta: Hemiptera, Coleorrhyncha). Geologica et Palaeontologica 25, 215–35.Google Scholar
Popov, Y. A. & Shcherbakov, D. E. 1996. Origin and evolution of the Coleorrhyncha as shown by the fossil record. In Schaefer, C. W. (ed) Studies on hemipteran phylogeny, 930. Lanham: Entomological Society of America. iii+244 pp.Google Scholar
Popov, Y. A., Dolling, W. R. & Whalley, P. E. S. 1994. British Upper Triassic and Lower Jurassic Heteroptera and Coleorrhyncha (Insecta: Hemiptera). Genus. International Journal of Invertebrate Taxonomy 5, 307–47.Google Scholar
Puton, A. 1878–1880. Synopsis des Hémiptères-Hétèroptères de France. 1 (pt. i, pp. 1–82, 1878; pt. 2, pp. 83–159, 1879; pt. 3, pp. 160–245, 1880). Paris: Deyrolle. 245 pp.Google Scholar
Qadri, M. A. H. 1967. Phylogenetic study of Auchenorrhyncha. University Studies (Karachi) 4(3), 116.Google Scholar
Rafinesque, C. S. 1815. Analyse de la nature ou Tableau de l'univers et des corps organisés. Palerme: Aux dépens de l'auteur. 224 pp.Google Scholar
Rasnitsyn, A. P. 1988. Problema global'nogo krizisa nazemnykh biotsenozov v seredinie melovogo perioda []. In Ponomarenko, A. G. (ed.) Melovoi biotsenoticheskii krizis i evolutsiya nasekomykh [], 191207. Moscow: Nauka.Google Scholar
Rasnitsyn, A. P. & Quicke, D. L. J. (eds) 2002. History of insects. Dordrecht / Boston / London: Kluwer Academic Publishers. xii+517 pp.Google Scholar
Raychaudhuri, D. N., Pal, P. K. & Ghosh, A. K. 1980. Taxonomy of aphids of northeast India and Bhutan. Taxonomic accounts of the subfamilies. Subfamily Anoeciinae. In Raychaudhuri, D. N. (ed) Aphids of Northeast India and Bhutan, 3947.Google Scholar
Reuter, O. M. 1884. Monographia Anthocoridarum orbis terrestris. Helsingforsiae: Ex officina typographica Societatis litterariae fennicae. 204 pp.Google Scholar
Reuter, O. M. 1891. Monographia Ceratocombidarum orbis terrestris. Acta Societatis Scientiarum Fennicae 19(6), 128+1 plate.Google Scholar
Reuter, O. M. 1910. Neue Beiträge zur Phylogenie und Systematik der Miriden nebst einleitenden Bemerkungen über die Phylogenie der Heteropteren-Familien. Acta Societatis scientiarum fennicae 37(3), 1172.Google Scholar
Richard, C. 1986. Carayonemidae famille nouvelle Carayonema orousseti n. gen, n. sp. de Guyane francaise (Homoptera, Coccoidea). Annales de la Société entomologique de France (n.s.) 22, 268–73.Google Scholar
Richards, W. R. 1966. Systematics of fossil aphids from Canadian amber (Homoptera: Aphididae). The Canadian Entomologist 98, 746–60.Google Scholar
Riek, E. F. 1973. Fossil insects from the Upper Permian of Natal, South Africa. Annals of the Natal Museum 21(3), 513–32.Google Scholar
Rohdendorf, B. B. & Rasnitsyn, A. P. 1980. Istoricheskoe razvitiie klassa nasekomykh [.] Trudy Paleontologicheskogo Instituta 175, 1199.Google Scholar
Ross, A. J., Edgecombe, G. D., Legg, D. & Clark, N. 2016. The Palaeozoic terrestrial arthropods of Scotland. 7th International conference on fossil insects, arthropods and amber, 26th April–1st May 2016, Edinburgh, Abstracts, 44.Google Scholar
Schilling, P. S. 1829. Hemiptera Heteroptera Silesiae Systematice disposuit. Beiträge zur Entomologie, besonders in Bezug auf die schlesische Fauna 1, 34–92+plates A, I–VIII.Google Scholar
Schlee, D. 1969a. Sperma-Übertragung (und andere Merkmale) in ihrer Bedeutung für das phylogenetische System der Sternorrhyncha (Insecta, Hemiptera). Phylogenetische Studien an Hemiptera. 1. Psylliformes (Psyllina and Aleyrodina) als monophyletische Gruppe. Zeitschrift für Morphologie der Tiere 64, 95138.Google Scholar
Schlee, D. 1969b. Die Verwantschaftsbeziehungen innerhalb der Sternorrhyncha auf Grund synapomorphe Merkmale. Phylogenetische Studien an Hemiptera. II. Aphidiformes (Aphidina–Coccina) als monophyletische Gruppe. Stuttgarter Beiträge zur Naturkunde 199, 119.Google Scholar
Schlee, D. 1969c. Bau und Funktion des Aedeagus bei Psyllina und deren Bedeutung für systematische und phylogenetische Untersuchungen (Insecta, Hemiptera). Phylogenetische Studien an Hemiptera. III. Entkräftung eines argument gegen die Monophylie der Sternorrhyncha. Zeitschrift für Morphologie der Tiere 64, 139–50.Google Scholar
Schouteden, H. 1909. Rhynchota für 1908. [Jahresbericht.] Archiv für Naturgeschichte 75(2, 2), 136219.Google Scholar
Schuh, R. T., Weirauch, C., Henry, T. J. & Halbert, S. E. 2008. Curaliidae, a new family of Heteroptera (Insecta: Hemiptera) from the eastern United States. Annals of the Entomological Society of America 101, 2029.Google Scholar
Schuh, R. T., Weirauch, C. & Wheeler, W. C. 2009. Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total evidence analysis. Systematic Entomology 34, 1548.Google Scholar
Schuh, R. T. & Slater, J. A. 1995. True bugs of the world (Hemiptera: Heteroptera). Classification and natural history. Ithaca, New York: Cornell University Press. xii+337 pp.Google Scholar
Scudder, G. G. E. 1962. Results of the Royal Society expedition to southern Chile, 1958–59: Lygaeidae (Hemiptera), with the description of a new subfamily. The Canadian Entomologist 94, 1064–75.Google Scholar
Seidenstücker, G. 1960. Heteroptera aus Iran 1956, III; Thaumastella aradoides Horv., eine Lygaeide ohne Ovipositor. Stuttgarter Beiträge zur Naturkunde A (Biologie) 38, 14.Google Scholar
Senter, P. 2008. Voices of the past: a review of Paleozoic and Mesozoic animal sounds. Historical Biology 20, 255–87.Google Scholar
Shaposhnikov, G. K. 1979. Pozdneyurskie i rannemelovye tli. Paleontologicheskiï Zhurnal 4, 6678. [Published in English as: Shaposhnikov, G. Kh. 1979. The Late Jurassic and early Cretaceous aphids. Paleontological Journal 13, 449–61.]Google Scholar
Shcherbakov, D. E. 1984. Sistema I filogeniya permskikh Cicadomorpha (Cimicida, Cicadina). Paleontologicheskiï Zhurnal 2, 89101. [Published in English as: Shcherbakov, D. E. 1984. Systematics and phylogeny of Permian Cicadomorpha (Cimicida and Cicadina). Paleontological Journal 18, 87–97.]Google Scholar
Shcherbakov, D. E. 1990. Extinct four-winged ancestors of scale insects (Homoptera: Sternorrhyncha). In Koteja, J. (ed.) Proceedings of the Sixth International Symposium of scale insect Studies, part II, Cracow, August 6–12 1990, 2329. Kraków: Agricultural University Press. 162 pp.Google Scholar
Shcherbakov, D. E. 1996. Origin and evolution of the Auchenorrhyncha as shown by the fossil record. In Schaefer, C. W. (ed) Studies on hemipteran phylogeny, 3145. Lanham: Entomological Society of America. iii+244 pp.Google Scholar
Shcherbakov, D. E. 2000a. The most primitive whiteflies (Hemiptera; Aleyrodidae; Bernaeinae subfam. nov.) from the Mesozoic of Asia and Burmese amber, with an overview of Burmese amber hemipterans. Bulletin of the Natural History Museum (Geology Series) 56, 2937.Google Scholar
Shcherbakov, D. E. 2000b. Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo-Triassic crisis. Paleontological Journal 34, Suppl. 3, S251S267.Google Scholar
Shcherbakov, D. E. 2005. Fossils versus molecules and cladistics: controversies over the Hemiptera phylogeny. Abstracts of Talks and Posters, I-1–I-3. 12th International Auchenorrhyncha Congress and 6th International Workshop on Leafhoppers and Planthoppers of Economic Significance, Berkeley 7–12 August 2005. [116 pp.]Google Scholar
Shcherbakov, D. E. 2007a. Extinct four-winged precoccids and the ancestry of scale insects and aphids (Hemiptera). Russian Entomological Journal 16, 4762.Google Scholar
Shcherbakov, D. E. 2007b. An extraordinary new family of Cretaceous planthoppers (Homoptera: Fulgoroidea). Russian Entomological Journal 16, 139–54.Google Scholar
Shcherbakov, D. E. 2007c. Mesozoic spider mimics – Cretaceous Mimarachnidae fam. n. (Homoptera: Fulgoroidea). Russian Entomological Journal 16, 259–64.Google Scholar
Shcherbakov, D. E. 2010. The earliest true bugs and aphids from the Middle Triassic of France (Hemiptera). Russian Entomological Journal 19, 179–82.Google Scholar
Shcherbakov, D. E. 2011. New and little-known families of Hemiptera Cicadomorpha from the Triassic of Central Asia–early analogs of treehoppers and planthoppers. Zootaxa 2836, 126.Google Scholar
Shcherbakov, D. E. 2012. More on Mesozoic Membracoidea (Homoptera). Russian Entomological Journal 21, 1522.Google Scholar
Shcherbakov, D. E. & Popov, Y. A. 2002. 2.2.1.2.5. Superorder Cimicidea Laicharting, 1781 Order Hemiptera Linné, 1758. The Bugs, Cicadas, Plantlice, Scale Insects, etc. (= Cimicida Laicharting, 1781, = Homoptera Leach, 1815+Heteroptera Latreille, 1810), 143–57. In Rasnitsyn, A. P. & Quicke, D. L. J. (eds) History of insects. Dordrecht / Boston / London: Kluwer Academic Publishers. xii+517 pp.Google Scholar
Shcherbakov, D. E. & Wegierek, P. 1991. Creaphididae, a new and the oldest aphid family from the Triassic of middle Asia. Psyche 98, 8185.Google Scholar
Signoret, V. 1875. Essai sur les cochenilles ou gallinsectes (Homoptères – Coccides). [14e; 15e, 16e et 17e parties (1)]. Annales de la Société entomologique de France Serie 5 5, 1540; 305–52 (1875); 353–94 (1876).Google Scholar
Silvestri, F. 1939. Fam. Coccidae. In Compendio di entomologia applicata (agraria, forestale, medica, veterinaria). Parte speciale 1(2), 618860.Google Scholar
Song, N. & Liang, A.-P. 2013. A preliminary molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea) based on nuclear and mitochondrial DNA sequences. PLoS ONE 8(3), e58400.Google Scholar
Sorensen, J. T., Campbell, B. C., Gill, R. J. & Steffen–Campbell, J. D. 1995. Non–monophyly of Auchenorrhyncha (“Homoptera”), based upon 18S rDNA phylogeny: eco–evolutionary and cladistic implications within pre–Heteropterodea Hemiptera (s.l.) and a proposal for new monophyletic sub–orders. Pan-Pacific Entomologist 71, 3160.Google Scholar
Spinola, M. 1839. Essai sur les Fulgorelles, sous-tribu de la tribu des Cicadaires, ordre des Rhyngotes. Annales de la Société Entomologique de France 8, 133–37, Plates 1–7.Google Scholar
Spinola, M. 1850. Tavola sinottica dei generi spettanti alla classe degle insetti artroidignati, Flemiptera, Linn. Latr. -Rhyngota, Fab.-Rhynchota, Burm. Memorie della Societa Italiana delle Scienze residente in Modena 25(1), 160.Google Scholar
Stål, C. 1858. Bidrag till Rio Janeiro-traktens Hemipter-Fauna. Kongliga Svenska Vetenskaps-Akademiens Förhandlingar (Ny Följd) 2(7), 184.Google Scholar
Stål, C. 1862. Synonymiska och systematiska anteckningar öfver Hemiptera. Öfversigt af Kongliga Svenska Vetenskaps-Akademiens Förhandlingar Stockholm 19, 479504.Google Scholar
Stål, C. 1864. Hemiptera Africana 1, 1256.Google Scholar
Stål, C. 1865. Hemiptera Africana 2, 1181.Google Scholar
Stål, C. 1866. Hemiptera Homoptera Latr. Hemiptera Africana 4, 1276.Google Scholar
Stål, C. 1867. Bidrag Hemipterernas Systematik. Öfversigt af Kongliga Vetenskaps-akademiens forhandlingar 24(7), 491560.Google Scholar
Stål, C. 1872. Enumeratio Hemipterorum. Bidrag till en forteckning ofver alla hittills kända Hemiptera. Jemte systematiska meddelanden, 2. Kongliga Svenska Vetenskaps-akademiens handlingar 10(4), 1159.Google Scholar
Stål, C. 1873. Enumeratio Hemipterorum. Bidrag till en forteckning ofver alla hittills kända Hemiptera. Jemte systematiska meddelanden, 3. Kongliga Svenska Vetenskaps-akademiens handlingar 11(2), 1163.Google Scholar
Steffan, A. W. 1968. Elektraphididae, Aphidinorum nova familia e sucino baltico (Insecta: Homoptera: Phylloxeroidea). Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere 95, 115.Google Scholar
Stichel, W. 1955. Illustrierte Bestimmungstabellen der Wanzen. 2, Europa (Hemiptera-Heteroptera Europae). Hydrocoriomorpha et Amphibicoriomorpha. 1(1–6), 1168. Berlin-Hermsdorf: Selbstverlag.Google Scholar
Stickney, F. S. 1934. The external anatomy of the red date scale Pheonicococcus marlatti Cockerell, and its allies. United States Department of Agriculture. Technical Bulletin 404, 1162.Google Scholar
Storozhenko, S. Y. 1992. Novye mezozoïskie grilloblattidovye nasekomye (Grylloblattida) iz Sredneï Azii. Paleontologicheskiï Zhurnal 1992, 1, 6775. [Translated into English as Storozhenko, S. Y. 1992. New Mesozoic Grylloblattid insects (Grylloblattida) from Central Asia. Paleontological Journal 26(1), 85–95.]Google Scholar
Štys, P. 1967. Medocostidae – a new family of Cimicomorphan Heteroptera based on a new genus and two new species from tropical Africa. 1. Descriptive part. Acta Entomologica Bohemoslovaca 64, 439–65.Google Scholar
Štys, P. 1983. A new family of Heteroptera with dipsocoromorphan affinities from Papua New Guinea. Acta Entomologica Bohemoslovaca 80, 256–92.Google Scholar
Štys, P. 1985. Současný stav beta-taxonomie řádu Heteroptera []. Práce Slovenskej entomologickej spoločnosti pri SAV 4, 205–35. [In Czech with English Abstract.]Google Scholar
Štys, P. & Kerzhner, I. M. 1975. The rank and nomenclature of higher taxa in recent Heteroptera. Acta entomologica Bohemoslovaca 72, 6479.Google Scholar
Sweet, M. 2006. Justification for the Aradimorpha as an infraorder of the suborder Heteroptera (Hemiptera: Prosorrhyncha) with special reference to pregenital abdominal structure. Denisia 19, zugleich Kataloge der OÖ. Landesmuseen Neue Serie 50, 225–48.Google Scholar
Szklarzewicz, T., Grzywacz, B., Szwedo, J. & Michalik, A. 2016. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta: Hemiptera: Cicadellidae: Evacanthinae). Protoplasma 253, 379–91.Google Scholar
Szwedo, J. 2002. Amber and amber inclusions of planthoppers, leafhoppers and their relatives (Hemiptera, Archaeorrhyncha et Clypaeorrhyncha). In Holzinger, W. (ed.) Zikaden – leafhoppers, planthoppers and cicadas (Insecta: Hemiptera: Auchenorrhyncha). Denisia, 4, zugleich Kataloge des OÖ. Landesmuseums Linz, Neue Folge Nr. 176, 3756.Google Scholar
Szwedo, J. 2007. Nymphs of a new family Neazoniidae fam. n. (Hemiptera: Fulgoromorpha: Fulgoroidea) from the Lower Cretaceous Lebanese amber. African Invertebrates 48, 127–43.Google Scholar
Szwedo, J., Bourgoin, T. & Lefebvre, F. 2004. Fossil Planthoppers (Hemiptera: Fulgoromorpha) of the World. An annotated catalogue with notes on Hemiptera classification. Warszawa: Studio 1. 199 pp.+8 plates.Google Scholar
Szwedo, J., Wang, B. & Zhang, H. C. 2011. An extraordinary Early Jurassic planthopper from Hunan (China) representing a new family Qiyangiricaniidae fam. nov. (Hemiptera: Fulgoromorpha: Fulgoroidea). Acta Geologica Sinica [English edition] 85, 739–48.Google Scholar
Szwedo, J., Lapeyrie, J. & Nel, A. 2015. Rooting down the aphid's tree – the oldest record of the Aphidomorpha lineage from Palaeozoic (Insecta: Hemiptera). Systematic Entomology 40, 207–13.Google Scholar
Szwedo, J. & Drohojowska, J. 2016. A swarm of whiteflies – the first record of gregarious behavior from Eocene Baltic amber. The Science of Nature 103, 35.Google Scholar
Takiya, D. M., Tran, P. L., Dietrich, C. H. & Moran, N. A. 2006. Co-cladogenesis spannig three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Molecular Ecology 15(13), 4175–91.Google Scholar
Tang, D., Yao, Y.-Z. & Ren, D. 2015. New fossil flower bugs (Heteroptera: Cimicomorpha: Cimicoidea: Vetanthocoridae) with uniquely long ovipositor from the Yixian Formation (Lower Cretaceous), China. Cretaceous Research 56, 504–09.Google Scholar
Tang, D., Yao, Y.-Z. & Ren, D. 2016. A new species of Vetanthocoridae (Heteroptera: Cimicomorpha) from the Lower Cretaceous of China. Cretaceous Research 64, 3035.Google Scholar
Tang, F.-T. 1992. [The Pseudococcidae of China (Homoptera: Coccoidea of Insecta).] Beijing: Chinese Agricultural Science Technology Press. 757 pp. [In Chinese, with English summary.]Google Scholar
Targioni-Tozetti, A. 1868. Introduccione alla seconda memoria per gli studj [sic!] sulle Cocciniglie, e Catalogo dei generi e delle specie della famiglia dei coccidi, rivista e ordinata. Atti della Società italiana di scienze naturali 11, 694738.Google Scholar
Targioni-Tozetti, A. 1869. Sopra due generi di cocciniglie (Coccidae) et sui criteri della loro definizione. Bollettino della Societa Entomologica Italiana 1, 257–67.Google Scholar
Tillyard, R. J. 1916. Descriptions of the fossil Insects, in Mesozoic and Tertiary insects of Queensland and New South Wales. Descriptions of the fossil insects and stratigraphical features. Queensland Geological Survey 253, 1170.Google Scholar
Tillyard, R. J. 1919. Mesozoic Insects of Queensland. No. 7 Hemiptera Homoptera; with a note on the phylogeny of the suborder. The Proceedings of the Linnean Society of New South Wales 44, 857–96.Google Scholar
Tillyard, R. J. 1921. Mesozoic Insects of Queensland. No. 8 Hemiptera Homoptera (contd) The genus Mesogereon; with a discussion of its relationship with the Jurassic Palaeontinidae. The Proceedings of the Linnean Society of New South Wales 46, 270–84.Google Scholar
Tillyard, R. J. 1922. Mesozoic Insects of Queensland. No. 9 Orthoptera, and additions to the Protorthoptera, Odonata, Hemiptera and Planipennia. The Proceedings of the Linnean Society of New South Wales 47, 447–70.Google Scholar
Tillyard, R. J. 1926. Kansas Permian Insects, Part 9: The Order Hemiptera. American Journal of Science Series 5 11(65), 381–95.Google Scholar
Toenschoff, E. R., Gruber, D. & Horn, M. 2012. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environmental Microbiology 14(5), 1284–95.Google Scholar
Tullgren, A. 1909. Aphidologische Studien. Arkiv för Zoologi 5(14): 1190.Google Scholar
Uhler, P. R. 1871. Part V. Catalogues. IV. Hemiptera. A list of Hemiptera collected in Eastern Colorado and Northeastern New Mexico, by C. Thomas, during the expedition of 1869. Preliminary report of the United States Geological Survey of Wyoming, and portions of contiguous territories, (being a second annual report of progress), conducted under the authority of the Secretary of the Interior by F. V. Hayden, United States Geologist, 471–72.Google Scholar
Usinger, R. L. 1932. Miscellaneous studies in the Henicocephalidae. Pan-Pacific Entomologist 8, 145–56.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1, 130.Google Scholar
Vea, I. M. & Grimaldi, D. A. 2015. Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea. American Museum Novitates 3823, 180.Google Scholar
Verhoeff, C. W. 1893. Vergleichende Untersuchungen über die Abdominalsegmente der weiblichen Hemiptera-Heteroptera und Homoptera, ein Beitrag zur Kenntniss der Phylogenie derselben. Verhandlungen des Naturhistorischen Vereins der Preußischen Rheinlande und Westphalens 50, 307–74.Google Scholar
von Dohlen, C. D. & Moran, N. A. 2000. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biological Journal of the Linnean Society 71, 689717.Google Scholar
Vondráček, K. 1957. Fauna ČSR – Mery-Psylloidea (řád: Hmyz Stejnokřídly – Homoptera) 9. Praha: Nakladatelství Československé akademie věd. 431 pp.Google Scholar
Wang, B., Szwedo, J. & Zhang, H. C. 2009. Jurassic Progonocimicidae (Hemiptera) from China and phylogenetic evolution of Coleorrhyncha. Science in China Series D-Earth Sciences, 52(12), 1953–61.Google Scholar
Wang, B., Szwedo, J., Zhang, H. C. & Fang, Y. 2010. New froghoppers from the Jurassic of China and their phylogenetic significance (Insecta: Hemiptera: Cercopoidea). Earth Science Frontiers, 17(), 224–25.Google Scholar
Wang, B., Szwedo, J., Zhang, H. C. 2012. New Cercopoidea from the Middle Jurassic of China and their evolutionary significance (Insecta: Hemiptera: Cicadomorpha). Palaeontology 55(6), 1223–43.Google Scholar
Weber, H. 1930. Biologie der Hemipteren. Eine Naturgeschichte der Schnabelkerfe. Berlin: Julius Springer. VII+543 pp.Google Scholar
Wegierek, P. 1989. Novye vidy mezozoïskikh tleï (Shaposhnikoviidae, Homoptera). Paleontologicheskiï Zhurnal 4, 4351. [Published in English as: Vengerek, P. 1990. New species of Mesozoic aphids (Shaposhnikoviidae, Homoptera). Paleontological Journal 23(4), 40–49.]Google Scholar
Westwood, J. O. 1838. The Entomologist's Text Book. London: W. S. Orr and Co. viii+432 pp.Google Scholar
Westwood, J. O. 1840. An introduction to the modern classification of insects; founded on the natural habits and corresponding organization of different families. 2. London: Longman, Orme, Brown and Green. xi+587+158 pp.Google Scholar
Westwood, J. O. 1874. Thesaurus Entomologicus Oxoniensis: or illustrations of new, rare and interesting insects, for the most part coloured, in the collections presented to the University of Oxford by the Rev. F.W. Hope. London: McMillan & Co. xxiv+205 pp.+40 plates (1873-1874) [Published in 4 parts: Part I, pp. 1–56 in 1873; parts II–IV in 1874].Google Scholar
Williams, D. J. 1969. The family-group names of the scale insects (Hemiptera: Coccoidea). Bulletin of the British Museum (Natural History), Entomology 23, 315–41.Google Scholar
Yao, Y.-Z., Cai, W.-Z., & Ren, D. 2006a. The first discovery of fossil rhopalids (Heteroptera: Coreoidea) from Middle Jurassic of Inner Mongolia, China. Zootaxa 1269, 5768.Google Scholar
Yao, Y.-Z., Cai, W.-Z. & Ren, D. 2006b. Fossil flower bugs (Heteroptera: Cimicomorpha: Cimicoidea) from the Late Jurassic of Northeast China, including a new family, Vetanthocoridae. Zootaxa 1360, 140.Google Scholar
Yao, Y.-Z., Cai, W.-Z. & Ren, D. 2007. The oldest known fossil plant bug (Hemiptera: Miridae), from Middle Jurassic of Inner Mongolia, China. Zootaxa 1442, 3741.Google Scholar
Yao, Y.-Z., Ren, D., Rider, D. A. & Cai, W. 2012. Phylogeny of the infraorder Pentatomomorpha based on fossil and extant morphology, with description of a new fossil family from China. PLoS ONE 7(5), e37289.Google Scholar
Yao, Y.-Z., Cai, W.-Z., Rieder, D. A. & Ren, D. 2013. Primioentatomidae fam. nov. (Hemiptera: Heteroptera: Pentatomomorpha), an extinct insect family from the Cretaceous of north-eastern China. Journal of Systematic Palaeontology 11, 6382.Google Scholar
Yao, Y.-Z., Cai, W.-Z., Xu, X., Shih, C.-K., Engel, M. S., Zheng, X.-T., Zhao, Y.-Y. & Ren, D. 2014. Blood-Feeding True Bugs in the Early Cretaceous. Current Biology 24, 1786–92.Google Scholar
Yoshizawa, K. & Johnson, N. P. 2006. Morphology of male genitalia in lice and their relatives and phylogenetic implications. Systematic Entomology 31, 350–61.Google Scholar
Zalessky, M. 1930. Sur deux représentants nouveaux des Paléohémiptères du Permien de la Kama et du Perebore dans le bassin de la Pétchora. Izvestiya Akademii Nauk SSSR, Otdelenie Fiziko-Matematicheskikh Nauk 1930, 1017–27.Google Scholar
Zhang, G.-X. & Hong, Y.-C. 1999. A new family Drepanochaitophoridae (Homoptera: Aphidoidea) from Eocene Fushun amber of Liaoning Province, China. Entomologia Sinica 6, 127–34.Google Scholar
Zhang, J. F., Zhang, S., Hou, F. L. & Ma, G. Y. 1989. Late Jurassic aphids (Homoptera, Insecta) from Shandong Province, China. Geology of Shandong 5, 2846.Google Scholar
Zhang, J.-F., Sun, B. & Zhang, X.-Y. 1994. Shandong Shanwang zhong xin shi kun chong yu zhi zhu. [.] Beijing: Science Press. v+298 pp. [In Chinese, with English Abstract.]Google Scholar
Zhang, J.-F., Golub, V. V., Popov, Y. A & Shcherbakov, D. E. 2005. Ignotingidae fam. nov. (Insecta: Heteroptera: Tingoidea), the earliest lace bugs from the upper Mesozoic of eastern China. Cretaceous Research 26, 783–92.Google Scholar
Zherikhin, V. V. 2002. 3.2. Ecological history of the terrestrial insects. In Rasnitsyn, A. P. & Quicke, D. L. J. (eds) History of Insects, 331–88. Dordrecht / Boston / London: Kluwer Academic Publisher. xii+517 pp.Google Scholar
Zrzavý, J. 1990. Evolution of Hemiptera: an attempt at synthetic approach. In Koteja, J. (ed.) Proceedings of the 6th International Symposium of scale insect studies, Cracow, August 6–12, 1990. Parts 1–2, 1922. Kraków: Agricultural University Press. 162 pp.Google Scholar
Zrzavý, J. 1992. Evolution of antennae and historical ecology of hemipteran insects (Paraneoptera). Acta entomologica bohemoslovaka 89, 7786.Google Scholar
Żyła, D., Blagoderov, V. & Wegierek, P. 2014. Juraphididae, a new family of aphids and its significance in aphid evolution. Systematic Entomology 39, 506–17.Google Scholar
Figure 0

Table 1 Diversity of extinct and extant insects. Data compiled from Nicholson et al. 2015; EDNA 2015; PaleoBioDB 2017, updated.

Figure 1

Figure 1 Relationships of major Hemiptera groups, major global changes affecting the evolution of the order and their heritable symbionts. Main symbiotic groups according to Bennett & Moran (2015). Times of estimated interrelationships given tentatively. Abbreviations: Betaproteo = beta proteobacterial symbiont(s); Gamma Halomo = gamma halomoproteobacterial symbiont(s); Gamma Entero = gamma enteroproteobacterial symbiont(s); Alphaproteo = alpha proteobacterial symbiont(s); Bacteriodetes = phylum Bacteriodetes symbiont(s); yeast-like = yeast-like symbiont(s).

Figure 2

Plate 1 Diversity of the Hemiptera. (1) A pea aphid Acyrtosiphon pisum (Aphididae) giving birth to live young. Photo: Shipher Wu, National Taiwan University, CC BY-SA 3.0. (2–3) Giant scale insect Drosicha corpulenta (Monophlebiidae): (2) female; (3) male. Photos: Bernard Dupont, CC BY-SA 2.0. (4) Pachypsylla sp. (Aphalaridae). Photo: Bruce Marlin, CC BY-SA 3.0. (5) Whitefly Bemisia tabaci (Aleyrodidae), USDA, public domain. (6) Winged aphid (Aphidoidea) from Baltic amber. Photo: Anders L. Damgaard, CC BY-SA 4.0. (7) A planthopper Pterodictya reticularis (Fulgoridae) with abdominal filaments of ketoester wax. Photo: Geof Gallice, CC BY-SA 2.0. (8) A planthopper (Tropiduchidae). Photo: Bernard Dumont, CC BY-SA 2.0. (9) Annual cicada Tibicen linnei (Cicadellidae). Photo: Bruce Marlin, CC BY-SA 2.5. (10) Green leafhopper Cicadella viridis (Cicadellidae). Photo: gbohne, CC BY-SA 2.0. (11) Cercopis sanguinolenta (Cercopidae), Photo: Hectonichus, CC BY-SA 3.0. (12) Aetalion sp. (Aetalionidae). PyBio.org. (13) Membracid treehopper Heteronotus sp. (Membracidae). Photo: Bernard Dupont, CC BY-SA 2.0. (14) Fossil hylicellid (Hylicellidae: Vietocyclinae), Middle Jurassic Daohugou Biota, Coll. NIGPAS NN4. Photo: J. Szwedo.

Figure 3

Plate 2 Diversity of the Hemiptera. (1) Moss bug Xenophyes rhachilophus (Peloridiidae). Photo: S. E. Thorpe, public domain. (2) Ochterus marginatus (Ochteridae), public domain. (3) Water strider (Gerridae). Photo: Ryan Hodnett, CC BY-SA 4.0. (4) Nepa rubra (Nepidae). Photo: Holger Gröschl, CC BY-SA 2.0. (5) Big-eyed toad bug Gelastocoris oculatus (Gelastocoridae). Photo: Ryan Hodnett, CC BY-SA 4.0. (6) Cryptostemna sp., female (Dipsocoridae). Photo: Michael F. Schönitzer, CC BY-SA 3.0. (7) Female of bed bug Cimex lectularius (Cimicidae), on the fur of one of its hosts, a bat. Photo: Jacopo Werther, CC BY-SA 4.0. (8) Checkerboard ground bug Spilostethus saxatilis (Lygaeidae). Photo: Bernard Dupont, CC BY-SA 2.0. (9) Plant bug Calocoris roseomaculatus (Miridae). Photo: Hectonichus, CC BY-SA 3.0. (10) Assassin bug (Reduviidae), female laying eggs. Photo: Bernard Dupont, CC BY-SA 2.0; (11) Sycamore lace bug Corythucha ciliata (Tingidae), Photo: Jacopo Werther, CC BY-SA 2.0. (12) Flag-footed bug Anisoscelis affinis (Coreidae). Photo: Cheryl Harleston, CC BY-NC-SA 4.0. (13) Shield-backed bug (Scutelleridae). Photo: Bernard Dupont, CC BY-SA 2.0.